Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Energy management in smart grids for the integration of hybrid wind–PV–FC–battery renewable energy resources using multi-objective particle swarm optimisation (MOPSO)

This study introduces an efficient energy management system (EMS) for a wind–photovoltaic (PV)–fuel cell (FC)–battery energy scheme with an effective control strategy to integrate with the utility grid. The suggested technique utilises the multi-objective particle swarm optimisation (MOPSO) to minimise the operation cost of the microgrid (MG) and maximise the generated power by each source. The presented MOPSO has the ability to minimise the operation cost of the MG with respect to the renewable penetration, the fluctuation in the generated power, uncertainty in power demand, and continuous change of the utility market price. The proposed optimisation strategy makes the exact choice of sources in right planning and chooses the power that must be created by each source and the power required by the utility network. The price fluctuation data of power and the variance of the renewable energy produced by each unit will be sent to the EMS by a communication network using global positioning system. The dynamic performance and the operation cost of the MG have been tested under different weather conditions and the variance of the power demand through a whole simulation period of 24 h. The stability of the MG, power quality, and voltage regulation is verified by Matlab simulation and experimental results.

References

    1. 1)
      • 14. Rémy, R.M., Bruno, S., Xavier, R., et al: ‘Optimal power dispatching strategies in smart-microgrids with storage’, Renew. Sustain. Energy Rev., 2014, 40, pp. 649658.
    2. 2)
      • 21. Niknam, T, Golestaneh, F, Shafiei, M.: ‘Probabilistic energy management of a renewable microgrid with hydrogen storage using self-adaptive charge search algorithm’, Energy, 2013, 49, pp. 252267.
    3. 3)
      • 31. Wu, H., Liu, X., Ding, M.: ‘Dynamic economic of a microgrid: mathematical models and solution algorithm’, Int. J. Electr. Power Energy Syst., 2014, 63, pp. 336346.
    4. 4)
      • 15. Tina, G.M., Scandura, P.F.: ‘Case study of grid connected with battery photo-voltaic system: V-trough concentration vs. single-axis tracking’, Energy Convers. Manage., 2012, 64, pp. 569578.
    5. 5)
      • 41. Moghaddam, A.A., Seifi, A., Niknam, T., et al: ‘Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source’, Energy, 2011, 36, pp. 64906507.
    6. 6)
      • 13. Ahn, S.J., Nam, S.R., Choi, J.H., et al: ‘Power scheduling of distributed generators for economic and stable operation of a microgrid’, IEEE Trans. Smart Grid, 2013, 4, pp. 398405.
    7. 7)
      • 29. Chen, C., Duan, S., Cai, T., et al: ‘Smart energy management system for optimal microgrid economic operation’, IET Renew. Power Gener., 2011, 5, pp. 258267.
    8. 8)
      • 50. Arcos-Aviles, D., Espinosa, N., Guinjoan, F., et al: ‘Improved fuzzy controller design for battery energy management in a grid connected microgrid’. IECON 2014 – 40th Annual Conf. of the IEEE Industrial Electronics Society, Dallas, USA, 2014.
    9. 9)
      • 37. Elsied, M., Oukaour, A., Gualous, H., et al: ‘Energy management and optimization in microgrid system based on green energy’, Energy J., 2015, 84, pp. 139151.
    10. 10)
      • 20. Yen-Haw, C.: ‘Economic analysis and optimal energy management models for microgrid systems: a case study in Taiwan’, Appl. Energy, 2013, 103, pp. 145154.
    11. 11)
      • 48. Ancillotti, E., Bruno, R., Conti, M.: ‘The role of communication systems in smart grids: architectures, technical solutions and research challenges’, Comput. Commun., 2013, 36, pp. 16651697.
    12. 12)
      • 18. Jiang, Q., Xue, M., Geng, G.: ‘Energy management of microgrid in grid-connected and stand-alone modes’, IEEE Trans. Power Syst., 2013, 28, pp. 33803389.
    13. 13)
      • 9. Phuangpornpitak, N, Tia, S.: ‘Opportunities and challenges of integrating renewable energy in smart grid system’, Energy Procedia, 2013, 34, pp. 282290.
    14. 14)
      • 52. Pfenninger, S., Staffell, I.: ‘Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data’, Energy, 2016, 114, pp. 12511265, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2016.08.060.
    15. 15)
      • 17. Zhao, B., Dong, X., Luan, W., et al: ‘Short-term operation scheduling in renewable-powered microgrids: a duality-based approach’, IEEE Trans. Sustain. Energy, 2014, 5, pp. 209217.
    16. 16)
      • 44. Elsied, M., Oukaour, A., Youssef, T., et al: ‘An advanced real time energy management system for microgrids’, Energy, 2016, 114, pp. 742752.
    17. 17)
      • 40. Grimaccia, F., Mussetta, M., Zich, R.E.: ‘Advanced predictive models towards PV energy integration in smart grid’. IEEE Int. Conf. on Fuzzy Systems (FUZZY IEEE), Brisbane, Australia, 2012, pp. 16.
    18. 18)
      • 28. Silva, M., Morais, H., Vale, Z.: ‘An integrated approach for distributed energy resource short-term scheduling in smart grids considering realistic power system simulation’, Energy Convers. Manage., 2012, 64, pp. 273288.
    19. 19)
      • 12. Kuznetsova, E., Li, Y.F., Ruiz, C., et al: ‘An integrated framework of agent-based modelling and robust optimization for microgrid energy management’, Appl. Energy, 2014, 129, pp. 7088.
    20. 20)
      • 4. Firouzi, B.B., Farjah, E., Abarghooee, R.A.: ‘An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties’, Energy, 2013, 50, pp. 232244.
    21. 21)
      • 26. Mohammadi, S., Soleymani, S., Mozafari, B.: ‘Scenario-based stochastic operation management of microgrid including wind, photovoltaic, micro-turbine, fuel cell and energy storage devices’, Int. J. Electr. Power Energy Syst., 2014, 54, pp. 525535.
    22. 22)
      • 46. Gungor, V.C., Sahin, D., Kocak, T., et al: ‘Smart grid technologies: communications, technologies and standards’, IEEE Trans. Ind. Inf., 2011, 7, (4), pp. 529539.
    23. 23)
      • 33. Marzband, M., Sumper, A., Ruiz-Álvarez, A., et al: ‘Experimental evaluation of a real time energy management system for stand-alone microgrids in day-ahead markets’, Appl. Energy, 2013, 106, pp. 365376.
    24. 24)
      • 30. Zhong, H., Xia, Q., Xia, Y., et al: ‘Integrated dispatch of generation and load: a pathway towards smart grids’, Electr. Power Syst. Res., 2015, 120, pp. 206213.
    25. 25)
      • 34. Marzband, M., Sumper, A., Domínguez-García, J.L., et al: ‘Experimental validation of a real time energy management system for microgrids in islanded mode using a local day-ahead electricity market and MINLP’, Energy Convers. Manage., 2013, 76, pp. 314322.
    26. 26)
      • 24. Elsied, M., Oukaour, A., Gualous, H., et al: ‘An advanced energy management of microgrid system based on genetic algorithm’. 2014 IEEE 23rd Int. Symp. on Industrial Electronics (ISIE), Istanbul, 2014.
    27. 27)
      • 27. Cau, G., Cocco, D., Ptrollese, M., et al: ‘Energy management strategy based on short-term generation scheduling for a renewable microgrid using a hydrogen storage system’, Energy Convers. Manage., 2014, 87, pp. 820831.
    28. 28)
      • 42. Marzband, M., Azarinejadian, F., Savaghebi, M., et al: ‘An optimal energy management system for islanded microgrids based on multiperiod artificial bee colony combined with Markov chain’, IEEE Syst. J., 2015, 99, pp. 111.
    29. 29)
      • 51. Kamal, T., Hassan, S.Z.: ‘Energy management and simulation of photovoltaic/hydrogen/battery hybrid power system’, Adv. Sci. Technol. Eng. Syst. J., 2016, 1, (2), pp. 1118.
    30. 30)
      • 43. Lin, W.-M., Tu, C.-S., Tsai, M.-T.: ‘Energy management strategy for microgrids by using enhanced bee colony optimization’, Energies, 2016, 9, (5), pp. 116.
    31. 31)
      • 8. US Department of Energy, Office of Electricity Delivery and Energy Reliability: ‘Smart grid research and development. multi-year program plan (MYPP)’, 2012.
    32. 32)
      • 39. Ricalde, L.J., Ordonez, E., Gamez, M., et al: ‘Design of smart grid management system with renewable energy generation’. IEEE Symp. on Computational Intelligence Applications in Smart Grids, Paris, France, 2011, pp. 14.
    33. 33)
      • 16. Zhang, L., Gari, N., Hmurcik, L.V.: ‘Energy management in a microgrid with distributed energy resources’, Energy Convers. Manage., 2014, 78, pp. 297305.
    34. 34)
      • 1. Faber, I., Lane, W., Pak, W., et al: ‘Micro-energy markets: the role of a consumer preference pricing strategy on microgrid energy investment’, Energy, 2014, 74, pp. 567575.
    35. 35)
      • 22. Niknam, T, Meymand, H.Z., Mojarrad, H.D.: ‘An efficient algorithm for multiobjective optimal operation management of distribution network considering fuel cell power plants’, Energy, 2011, 36, pp. 119132.
    36. 36)
      • 11. Luna, A.C., Diaz, N.L., Graells, M., et al: ‘Mixed-integer-linear-programming based energy management system for hybrid PV-wind-battery microgrids: modelling, design and experimental verification’, IEEE Trans. Power Electron., 2016, PP, (99), pp. 27692783.
    37. 37)
      • 19. Gabbar, H.A., Abdelsalam, A.A.: ‘Microgrid energy management in grid-connected and islanding modes based on SVC’, Energy Convers. Manage., 2014, 86, pp. 964972.
    38. 38)
      • 7. Mazidi, M., Zakariazadeh, A., Jadid, S., et al: ‘Integrated scheduling of renewable generation and demand response programs in a microgrid’, Energy Convers. Manage., 2014, 86, pp. 11181127.
    39. 39)
      • 3. Lidula, N.W.A., Rajapakse, A.D.: ‘Microgrids research: a review of experimental microgrids and test systems’, Renew. Sustain. Energy Rev., 2011, 15, pp. 186202.
    40. 40)
      • 38. Logenthiran, T., Srinivasan, D., Khambadkone, A.M.: ‘Multi-agent system for energy resource scheduling of integrated micro grids in a distributed system’, Electr. Power Syst. Res., 2011, 81, (1), pp. 138148.
    41. 41)
      • 25. Rad, A.H.R.M., Wong, V.W.S., Jatskevich, J., et al: ‘Autonomous demand side management based on game-theoretic energy consumption scheduling for the future smart grid’, IEEE Trans. Smart Grid, 2010, 1, (3), pp. 320331.
    42. 42)
      • 6. Khrennikov, A.Y.: ‘New intellectual networks (smart grid) for detecting electrical equipment faults, defects and weaknesses’, Smart Grid Renew. Energy, 2012, 3, pp. 159164.
    43. 43)
      • 53. Chakraborty, S., Ito, T., Senjyu, T., et al: ‘Intelligent economic operation of smart-grid facilitating fuzzy advanced quantum evolutionary method’, IEEE Trans. Sustain. Energy, 2013, 4, pp. 905916.
    44. 44)
      • 55. Leonori, S., De Santis, E., Rizzi, A., et al: ‘Multi objective optimization of a fuzzy logic controller for energy management in microgrids’. 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, Canada, 24–29 July 2016, pp. 319326.
    45. 45)
      • 47. Usman, A., Shami, S.H.: ‘Evolution of communication technologies for smart grid applications’, Renew. Sustain. Energy Rev., 2013, 19, pp. 191199.
    46. 46)
      • 45. Wang, W., Xu, Y., Khanna, M.: ‘A survey on the communication architectures in smart grid’, Comput. Netw., 2011, 55, pp. 36043629.
    47. 47)
      • 10. Gupta, A., Saini, R.P., Sharma, M.P.: ‘Steady-state modelling of hybrid energy system for off grid electrification of cluster of villages’, Renew. Energy, 2010, 35, (2), pp. 520535.
    48. 48)
      • 54. Liao, G.C.: ‘Solve environmental economic dispatch of smart microgrid containing distributed generation system – using chaotic quantum genetic algorithm’, Int. J. Electr. Power Energy Syst., 2012, 43, pp. 779787.
    49. 49)
      • 35. Basrawi, F., Yamada, T., Obara, S.: ‘Economic and environmental based operation strategies of a hybridphotovoltaic-microgas turbine trigeneration system’, Appl. Energy, 2014, 121, pp. 174183.
    50. 50)
      • 5. Taha, S.: ‘Recent developments in microgrids and example cases around the world – a review’, Renew. Sustain. Energy Rev., 2011, 15, pp. 40304041.
    51. 51)
      • 49. Arcos-Aviles, D., Vega, C., Guinjoan, F., et al: ‘Fuzzy logic controller design for battery energy management in a grid connected electrothermal microgrid’. 2014 IEEE 23rd Int. Symp. on Industrial Electronics (ISIE), Istanbul, Turkey, 2014.
    52. 52)
      • 32. Logenthiran, T., Srinivasan, D., Khambadkone, A.M., et al: ‘Optimal sizing of an islanded microgrid using evolutionary strategy’. IEEE Int. Conf. on Probabilistic Methods Applied to Power Systems (PMAPS), Singapore, 2010.
    53. 53)
      • 2. Reddy, K.S., Kumar, M., Mallick, T.K., et al: ‘A review of integration, control, communication and metering (ICCM) of renewable energy based smart grid’, Renew. Sustain. Energy Rev., 2014, 38, pp. 180192.
    54. 54)
      • 36. Niknam, T., Abarghooee, R.A., Narimani, M.R.: ‘An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation’, Appl. Energy, 2012, 99, pp. 455470.
    55. 55)
      • 23. Ippolito, M.G., Silvestre Di, M.L., Riva Sanseverinoa, E., et al: ‘Multi-objective optimized management of electrical energy storage systems in an islanded network with renewable energy sources under different design scenarios’, Energy, 2014, 64, pp. 648662.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.5036
Loading

Related content

content/journals/10.1049/joe.2018.5036
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address