Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Microstrip angular log-periodic slow wave structure on quartz substrate with coaxial input/output coupler

The microstrip angular log-periodic meander line slow wave structure (SWS) on quartz substrate with coaxial input/output coupler is studied. The effects of different structure parameters on transmission characteristics of the 25 periods SWS during Ka band are discussed in detail. The SWS with the total length of ∼6.5 mm, add coaxial input/output coupler and tapered impedance microstrip line to form an entire assembly. The testing result is accordant with that of simulation. The dispersion characteristics of the SWS were obtained to determine the work voltage. The beam-wave interaction results show that the output power is 11.4 W at the frequency of 32 GHz, with the electron efficiency of 3.3%.

References

    1. 1)
      • 18. Wang, S., Cao, Z., Hou, Y., et al: ‘A novel angular log-periodic micro-strip meander-line slow wave structure for low-voltage and wideband traveling wave tube’. Vacuum Electronics Conf. (IVEC), Paris, France, May 2013, pp. 12.
    2. 2)
      • 20. Li, X., Xu, Y., Wang, S., et al: ‘Study on phase velocity tapered microstrip angular log-periodic meander line travelling wave tube’, IET-MAP, 2016, 10, (8), pp. 902907.
    3. 3)
      • 1. Skolnik, M.I.: ‘Radar handbook’ (McGraw-Hill, New York, NY, USA, 1970), pp. 190.
    4. 4)
      • 22. Wang, S.: ‘Study of radial sheet electron beam travelling wave tube’, PhD thesis, University of Electronic Science and Technology of China, 2013.
    5. 5)
      • 24. CST MSW tutorials. http://www.cst-china.cn, accessed October 2017.
    6. 6)
    7. 7)
      • 10. TWEETHER website. http://www.tweether.eu, accessed October 2017.
    8. 8)
      • 11. Paoloni, C., Magne, F., Andre, F., et al: ‘Millimeter wave wireless system based on point to multipoint transmissions’, European Conference on Networks and Communications (EuCNC), Athens, 2016, pp. 106110.
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • 16. Ding, C., Wei, Y., Zhang, L., et al: ‘Beam-wave interaction study on a novel Ka-band ring-shaped microstrip meander-line slow wave structure’, 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Tucson, 2014, pp. 12.
    13. 13)
      • 14. Paoloni, C., Andre, F., Kohler, S., et al: ‘A traveling wave tube for 92–95 Ghz band wireless applications’, 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Copenhagen, 2016, pp. 12.
    14. 14)
      • 2. Wang, W.X.: ‘Microwave engineering technology’ (National Defence Industry Press, Beijing, China, 2009), pp. 120135.
    15. 15)
    16. 16)
      • 3. Borsuk, G.M., Levush, B.: ‘Vacuum electronics research perspective at the naval research laboratory’. Proc. IEEE Int. Vac. Electron.Conf., Monterey, CA, USA, May 2010, p. 3.
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • 23. Pozar, D.M.: ‘Microwave engineering’ (Wiley Hoboken, 2011, 4th Edn.), pp. 147150.
    21. 21)
      • 13. Paoloni, C., Magne, F., Andre, F., et al: ‘Tweether future generation W-band backhaul and access network technology’, European Conference on Networks and Communications (EuCNC), Oulu, 2017, pp. 15.
    22. 22)
      • 12. Paoloni, C., Magne, F., Andre, F., et al: ‘Tweether project for W-band wireless networks’, IEEE 9th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT), Qingdao, 2016, pp. 4243.
    23. 23)
    24. 24)
      • 6. Tian, Y., Yue, L., Zhou, Q., et al: ‘Folded V-shape groove waveguide for 0.22-Thz traveling wave tube’. IEEE International Vacuum Electronics Conference, Monterey, IVEC2016, 2016.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.0095
Loading

Related content

content/journals/10.1049/joe.2018.0095
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address