http://iet.metastore.ingenta.com
1887

access icon openaccess Occlusion detection via correlation filters for robust object tracking

  • PDF
    5.159070014953613MB
  • HTML
    150.904296875Kb
  • XML
    134.603515625Kb
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/7/JOE.2017.0795.html;jsessionid=13fdtcmdt1hqf.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2017.0795&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Bolme, D.S., Beveridge, J.R., Draper, B.A.: ‘Visual object tracking using adaptive correlation filters’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, San Francisco, CA, USA, 2010, pp. 25442550.
    2. 2)
      • 2. Henriques, J.F., Rui, C., Martins, P.: ‘Exploiting the circulant structure of tracking-by-detection with kernels’. Proc. European Conf. Computer Vision, Firenze, Italy, 2012, pp. 702715.
    3. 3)
    4. 4)
      • 4. Khan, F.S., Anwer, R.M.: ‘Color attributes for object detection’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Providence, RI, USA, 2012, pp. 33063313.
    5. 5)
      • 5. Dalal, N., Triggs, B.: ‘Histograms of oriented gradients for human detection’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, San Diego, CA, USA, 2005, pp. 886893.
    6. 6)
      • 6. Danelljan, M., Khan, F., Felsberg, S.M.: ‘Adaptive color attributes for real-time visual tracking’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014, pp. 10901097.
    7. 7)
      • 7. Li, Y., Zhu, J.: ‘A scale adaptive kernel correlation filter tracker with feature integration’. Proc. European Conf. Computer Vision, Zurich, 2014, pp. 254265.
    8. 8)
      • 8. Danelljan, M., Häger, G., Khan, F.: ‘Accurate scale estimation for robust visual tracking’. Proc. British Machine Vision Conf., Nottingham, 2014, pp. 65.165.11.
    9. 9)
      • 9. Zhang, K., Zhang, L., Liu, Q.: ‘Fast visual tracking via dense spatio-temporal context learning’. Proc. European Conf. Computer Vision, Zurich, 2014, pp. 127141.
    10. 10)
      • 10. Dinh, T.B., Vo, N., Medioni, G.: ‘Context tracker: exploring supporters and distracters in unconstrained environments’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 2011, pp. 11771184.
    11. 11)
      • 11. Yang, M., Wu, Y., Hua, G.: ‘Context-aware visual tracking’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 7, (31), pp. 11951209, doi: 10.1109/TPAMI.2008.146.
    12. 12)
      • 12. Mueller, M., Smith, N., Ghanem, B.: ‘Context-aware correlation filter tracking’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Honolulu, Hawaii, 2017, pp. 13871395..
    13. 13)
      • 13. Adam, A., Rivlin, E., Shimshoni, I.: ‘Robust fragments-based tracking using the integral histogram’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, New York, USA, 2006, pp. 798805.
    14. 14)
      • 14. Zhang, T., Jia, K., Xu, C., et al: ‘Partial occlusion handling for visual tracking via robust part matching’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014, pp. 12581265.
    15. 15)
      • 15. Li, Y., Zhu, J., Hoi, S.C.H.: ‘Reliable patch trackers: robust visual tracking by exploiting reliable patches’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Boston, MA, USA, 2015, pp. 353361.
    16. 16)
      • 16. Liu, T., Wang, G., Yang, Q.: ‘Real-time part-based visual tracking via adaptive correlation filters’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Boston, MA, USA, 2015, pp. 49024912.
    17. 17)
    18. 18)
      • 18. Ma, C., Yang, X., Zhang, C.: ‘Long-term correlation tracking’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Boston, MA, USA, 2015, pp. 53885396.
    19. 19)
      • 19. Zhu, G., Wang, J., Wu, Y.: ‘Collaborative correlation tracking’. Proc. British Machine Vision Conf., Swansea, UK, 2015, pp. 184.1184.12.
    20. 20)
    21. 21)
      • 21. Henriques, J., Carreira, J., Caseiro, R., et al: ‘Beyond hard negative mining: efficient detector learning via block-circulant decomposition’. Proc. IEEE Int. Conf. Computer Vision, Sydney, NSW, Australia, 2013, pp. 27602767.
    22. 22)
      • 22. Grabner, H., Grabner, M., Bischof, H.: ‘Real-time tracking via on-line boosting’. Proc. British Machine Vision Conf., Edinburgh, UK, 2006, pp. 4756.
    23. 23)
    24. 24)
      • 24. Hare, S., Saffari, A., Torr, P.H.: ‘Struck: structured output tracking with kernels’. Proc. IEEE Conf. Computer Vision, Barcelona, Spain, 2011, pp. 263270.
    25. 25)
    26. 26)
      • 26. Kwon, J., Lee, K. M.: ‘Visual tracking decomposition’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, San Francisco, CA, USA, 2010, pp. 12691276.
    27. 27)
      • 27. Zhong, W., Lu, H., Yang, M. H.: ‘Robust object tracking via sparsity-based collaborative model’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Providence, RI, USA, 2012, pp. 18381845.
    28. 28)
      • 28. Gao, J., Ling, H., Hu, W.: ‘Transfer learning based visual tracking with Gaussian processes regression’. Proc. European Conf. Computer Vision, Zurich, 2014, pp. 188203.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2017.0795
Loading

Related content

content/journals/10.1049/joe.2017.0795
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address