http://iet.metastore.ingenta.com
1887

access icon openaccess Modelling of wire resistance effect in PCM-based nanocrossbar memory

  • HTML
    73.1455078125Kb
  • XML
    63.20703125Kb
  • PDF
    515.9404296875Kb
Loading full text...

Full text loading...

/deliver/fulltext/joe/2016/10/JOE.2016.0212.html;jsessionid=yuh4riuhs70q.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2016.0212&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Pronin, A.: ‘Phase change memory: fundamentals and measurement techniques’ (Keithley Instruments, 2010), pp. 14.
    2. 2)
      • 2. El-Hassan, N.H., Kumar, T.N., Almurib, H.A.F.: ‘Improved SPICE model for phase change memory cell’. Proc. Int. Conf. Intelligent and Advanced Systems, pp. 27.
    3. 3)
      • 3. Qureshi, M.K., Srinivasan, V., Rivers, J.A.: ‘Scalable high performance main memory system using phase-change memory technology’. Proc. 36th Annual Int. Symp. Computer Architecture – ISCA ‘09, 2009, vol. 37, no. 3, p. 24.
    4. 4)
      • 4. Dong, M., Zhong, L.: ‘Challenges to crossbar integration of nanoscale two-terminal symmetric memory devices’. Proc. Int. Conf. Nanotechnology, IEEE-NANO, 2008, pp. 692694.
    5. 5)
      • 5. Chen, A.: ‘Accessibility of nano-crossbar arrays of resistive switching devices’. Proc. IEEE Conf. Nanotechnology, 2011, no. 3, pp. 17671771.
    6. 6)
    7. 7)
    8. 8)
      • 8. Mohammad, M.G., Terkawi, L., Albasman, M.: ‘Phase change memory faults’. Proc. Int. Conf. VLSI Design, 2006.
    9. 9)
      • 9. Ziegler, M.M., Stan, M.R.: ‘Design and analysis of crossbar circuits for molecular nanoelectronics’. Proc. IEEE Conf. Nanotechnology, 2002, pp. 323327.
    10. 10)
      • 10. Kannan, S., Rajendran, J., Karri, R., et al: ‘Engineering crossbar based emerging memory technologies’. Proc. IEEE Int. Conf. Computer Design VLSI Computers and Processors, 2012, pp. 478479.
    11. 11)
      • 11. Chen, A., Krivokapic, Z., Lin, M.R.: ‘A comprehensive model for crossbar memory arrays’. Device Research Conf. Digest DRC, 2012, vol. 25, no. 408, pp. 219220.
    12. 12)
      • 12. Chen, A.: ‘Comprehensive methodology for the design and assessment of crossbar memory array with nonlinear and asymmetric selector devices’. Proc. Technical DigestInt. Electron Devices Meeting IEDM, 2013, no. 408, pp. 746749.
    13. 13)
      • 13. Cassuto, Y., Kvatinsky, S., Yaakobi, E.: ‘Sneak-path constraints in memristor crossbar arrays’. Proc. IEEE Int. Symp. Information Theory, 2013, pp. 156160.
    14. 14)
    15. 15)
    16. 16)
      • 16. Nauenheim, C.: ‘Integration of resistive switching devices in crossbar structures’ (Forschungszentrum Jülich, 2010).
    17. 17)
    18. 18)
      • 18. Ielmini, D., Zhang, Y.: ‘Physics-based analytical model of chalcogenide-based memories for array simulation’. Technical Digest – Int. Electron Devices Meeting IEDM, 2006, vol. 40.
    19. 19)
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2016.0212
Loading

Related content

content/journals/10.1049/joe.2016.0212
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address