Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess A parametric study of laser spot size and coverage on the laser shock peening induced residual stress in thin aluminium samples

Laser Shock Peening is a fatigue enhancement treatment using laser energy to induce compressive Residual Stresses (RS) in the outer layers of metallic components. This work describes the variations of introduced RS-field with peen size and coverage for thin metal samples treated with under-water-LSP. The specimens under investigation were of aluminium alloy AA2024-T351, AA2139-T3, AA7050-T76 and AA7075-T6, with thickness 1.9 mm. The RS were measured by using Hole Drilling with Electronic Speckle Pattern Interferometry and X-ray Diffraction. Of particular interest are the effects of the above mentioned parameters on the zero-depth value, which gives indication of the amount of RS through the thickness, and on the value of the surface compressive stresses, which indicates the magnitude of induced stresses. A 2D-axisymmetrical Finite Element model was created for a preliminary estimation of the stress field trend. From experimental results, correlated with numerical and analytical analysis, the following conclusions can be drawn: increasing the spot size the zero-depth value increases with no significant change of the maximum compressive stress; the increase of coverage leads to significant increase of the compressive stress; thin samples of Al-alloy with low Hugoniot Elastic Limit (HEL) reveal deeper compression field than alloy with higher HEL value.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • 44. http://www.matweb.com/, accessed June 2015.
    6. 6)
      • 18. http://www.stresstechgroup.com/, accessed April 2015.
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • 49. Ballard, P., Fournier, J., Fabbro, R., Frelat, J.: ‘Residual stresses induced by laser-shocks’, J Phys IV, 1991, 1, (C3), pp. 487494.
    12. 12)
      • 43. http://asm.matweb.com/, accessed April 2015.
    13. 13)
      • 3. Ballard, P.: ‘Contraintes résiduelles induites par impact rapide. Application au choc laser’. PhD Thesis, Ecole Polytechnique, 1991.
    14. 14)
    15. 15)
      • 35. Ding, K., Ye, L.: ‘Laser shock peening: performance and process simulation’, Woodhead Publishing Limited, 2006.
    16. 16)
      • 37. Wriggers, P.: ‘Nonlinear finite element methods’, Sringer editor, 2008.
    17. 17)
    18. 18)
    19. 19)
      • 32. Tae Keun Oh: ‘Defect characterization in concrete elements using vibration analysis and imaging’, PhD Thesis, University of Illinois Urbana-Champaign, 2012.
    20. 20)
      • 42. Schwer, L.: ‘Optional strain-rate forms for the Johnson Cook constitutive model and the role of the parameter epsilon_01’. Proc. Sixth German LS-DYNA Users’ Forum, Frankenthal, Germany, 2007, (E-I)114.
    21. 21)
      • 38. Zienkiewicz, O.C., Taylor, R.L.: ‘The Finite Element Method’, Fifth Edition, Butterworth-Heinemann editors, 2000.
    22. 22)
      • 45. Song, H.B., Peyre, P., Ji, V., Jiang, C.H.: ‘Near surface stress gradients analysis by gixrd on laser shocked 6056 aluminium alloy samples’, International Centre for Diffraction Data, 2009, pp. 485492.
    23. 23)
    24. 24)
      • 41. Johnson, G.R., Cook, W.H.: ‘A constitutive model and data for metal subjected to large strains, high strain rates and high temperatures’. Proc. Seventh Int. Symp. on Ballistics, The Hague, Netherlands, 1983, pp 541547.
    25. 25)
      • 29. http://www.pulstec.net/, accesses June 2015.
    26. 26)
    27. 27)
    28. 28)
      • 1. Hackel, L.A., Chen, H.L.: LS&T Annual Report 2001, UCRL-ID-134972-01, Springfield, VA 22161, USA.
    29. 29)
    30. 30)
    31. 31)
      • 24. Hammersley, A.P.: ‘FIT2D: An Introduction and Overview’, ESRF Internal Report, 1997, ESRF97HA02 T.
    32. 32)
    33. 33)
    34. 34)
    35. 35)
      • 36. ABAQUS Analysis User's manual, 1998.
    36. 36)
      • 20. Jacquot, P.: ‘Speckel interferometry: a review of the principal methods in use for experimental mechanics applications’, The Author J. compilation, 2008, Strain 44, pp. 5769.
    37. 37)
    38. 38)
      • 21. Schajer, G.S.: ‘Advances in hole-drilling residual stress measurements’, Proceedings of the XIth International Congress and Exposition, Orlando, Florida, June 2008.
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
      • 12. Sano, Y., Mukai, N., Yoda, M., Ogawa, K., Suezono, N.: ‘Underwater laser shock processing to introduce residual compressive stress on metals’, Material Science Research International, 2001, Special Technical Publication, 2, pp. 453458.
    46. 46)
    47. 47)
    48. 48)
      • 11. Lee, K., Lim, C.H., Kwon, S.O.: ‘Propagation of laser-generated shock wave in a metal confined in water’,  J. of the Korean Physical Society, 2006, 49, (1), pp. 387392.
    49. 49)
      • 14. Barker, L.M.: ‘VISAR vs PDV’, Valyn International, http://www.valynvisar.com/, accessed April 2015.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2015.0106
Loading

Related content

content/journals/10.1049/joe.2015.0106
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address