access icon openaccess Hybrid algorithm for rotor angle security assessment in power systems

Transient rotor angle stability assessment and oscillatory rotor angle stability assessment subsequent to a contingency are integral components of dynamic security assessment (DSA) in power systems. This study proposes a hybrid algorithm to determine whether the post-fault power system is secure due to both transient rotor angle stability and oscillatory rotor angle stability subsequent to a set of known contingencies. The hybrid algorithm first uses a new security measure developed based on the concept of Lyapunov exponents (LEs) to determine the transient security of the post-fault power system. Later, the transient secure power swing curves are analysed using an improved Prony algorithm which extracts the dominant oscillatory modes and estimates their damping ratios. The damping ratio is a security measure about the oscillatory security of the post-fault power system subsequent to the contingency. The suitability of the proposed hybrid algorithm for DSA in power systems is illustrated using different contingencies of a 16-generator 68-bus test system and a 50-generator 470-bus test system. The accuracy of the stability conclusions and the acceptable computational burden indicate that the proposed hybrid algorithm is suitable for real-time security assessment with respect to both transient rotor angle stability and oscillatory rotor angle stability under multiple contingencies of the power system.

Inspec keywords: power system faults; computational complexity; power system stability; damping; power system transients; Lyapunov methods; power system security; electric generators; rotors

Other keywords: Prony algorithm; rotor angle security assessment; oscillatory rotor angle stability assessment; 50-generator 470-bus test system; transient rotor angle stability assessment; computational burden; LE concept; damping ratio; 16-generator 68-bus test system; power system fault; Lyapunov exponent concept; DSA; dynamic security assessment

Subjects: Power system control; Power system protection

References

    1. 1)
      • 2. Kundur, P., Paserba, J., Ajjarapu, V., et al: ‘Definition and classification of power system stability’, IEEE Trans. Power Syst., 2004, 19, (2), pp. 13871401.
    2. 2)
      • 3. Fink, L.H., Carisen, K.: ‘Operating under stress and strain’. IEEE Spectrum, March 1978, pp. 4853.
    3. 3)
      • 24. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: ‘Determining Lyapunov exponents from a time series’, Phys. 16D, 1985, 16, (3), pp. 285317.
    4. 4)
      • 10. Chiang, H.-D.: ‘Direct methods for stability analysis of power systems: theoretical foundation, BCU methodologies and applications’ (John Wiley, 2010).
    5. 5)
    6. 6)
    7. 7)
      • 25. Sauer, P.W., Pai, M.A.: ‘Power system dynamics and stability’ (Prentice-Hall, 1997).
    8. 8)
      • 6. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, 1994).
    9. 9)
    10. 10)
      • 17. Power Tec. Lab, BC, Canada: ‘Small Signal Analysis Tool (SSAT) User manual’, 2009.
    11. 11)
      • 7. Power Tec Lab, BC, Canada: ‘Transient Stability Assessment Tool (TSAT) User Manual’, 2009.
    12. 12)
    13. 13)
      • 2. Kundur, P., Paserba, J., Ajjarapu, V., et al: ‘Definition and classification of power system stability’, IEEE Trans. Power Syst., 2004, 19, (2), pp. 13871401.
    14. 14)
    15. 15)
      • 1. ‘Definition of adequate level of reliability’, http://www.nerc.com/docs/pc/Definition-of-ALR-approved-at-Dec-07-OC-PC-mtgs.pdf, accessed September 2014.
    16. 16)
    17. 17)
    18. 18)
      • 3. Fink, L.H., Carisen, K.: ‘Operating under stress and strain’. IEEE Spectrum, March 1978, pp. 4853.
    19. 19)
      • 27. Chaudhuri, B., Pal, B.: ‘Robust control in power systems’ (Springer, 2005).
    20. 20)
    21. 21)
    22. 22)
      • 9. Pavella, M., Ernst, D., Ruiz-Vega, D.: ‘Transient stability of power systems: a unified approach to assessment and control’ (Kluwer, 2000).
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
      • 28. Jayasekara, K.Y.B.D.S.: ‘Determination of transient stability boundary in functional form with applications in optimal power flow and security control’. PhD thesis, University of Manitoba, 2006.
    28. 28)
      • 8. Khalil, K.H.: ‘Nonlinear systems’ (Prentice-Hall, 1994, 2nd edn.).
    29. 29)
    30. 30)
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2015.0033
Loading

Related content

content/journals/10.1049/joe.2015.0033
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading