access icon openaccess Performance comparison of two different filter design approaches for torsional vibration damping in a doubly fed induction generator-based wind turbine

Conventional band-pass filter (BPF)-based damper is commonly employed to damp the vibrations in the drive train caused by turbulent winds. However, for the case of grid disturbances or faults resultant torsional vibrations, the performance of the BPF-based damper can be compromised because of the potential low-frequency vibration modes from grid side. To overcome this shortcoming, low-pass filter (LPF)-based torsional damper was proposed in this study. The theoretical analysis of the two torsional damper was assessed in frequency domain. Performance comparison of the two dampers was conducted through simulations and the proposed LPF-based torsional damper outperformed the conventional one in the presence of unexpected low-frequency vibrations. Results also showed that retuning the BPF by decreasing the quality factor can restore the intended performance of torsional damper.

Inspec keywords: vibrations; Q-factor; band-pass filters; wind turbines; asynchronous generators; damping; turbulence

Other keywords: unexpected low-frequency vibrations; frequency domain; BPF-based damper; grid disturbances; low-pass hlter based torsional damper; drive train; quality factor; faults resultant torsional vibrations; doubly fed induction generator-based wind turbine; filter design approaches; torsional damper; conventional band-pass filter-based damper; performance comparison; LPF; torsional vibration damping; turbulent winds

Subjects: Fluid mechanics and aerodynamics (mechanical engineering); Power and plant engineering (mechanical engineering); Vibrations and shock waves (mechanical engineering)

References

    1. 1)
    2. 2)
      • 17. Boukhezzar, B., Siguerdidjane, H.: ‘Nonlinear control of a variable-speed wind turbine using a two-mass model’, IEEE Trans. Energy Convers., 2011, 26, pp. 149162. Available at http://www.dx.doi.org/10.1109/TEC.2010.2090155.
    3. 3)
      • 21. Li, S., Haskew, T.: ‘Analysis of decoupled d–q vector control in DFIG back-to-back PWM converter’. Power Engineering Society General Meeting, 2007, IEEE, 2007, pp. 17. Available at http://www.dx.doi.org/10.1109/PES.2007.385461.
    4. 4)
      • 13. Yin, M., Li, G., Zhou, M., Zhao, C.: ‘Modeling of the wind turbine with a permanent magnet synchronous generator for integration’. Power Engineering Society General Meeting, 2007. IEEE, 2007, pp. 16. Available at http://www.dx.doi.org/10.1109/PES.2007.385982.
    5. 5)
      • 14. Salman, S., Teo, A.L.J.: ‘Windmill modeling consideration and factors influencing the stability of a grid-connected wind power-based embedded generator’, IEEE Trans. Power Syst., 2003, 18, pp. 793802. Available at http://www.dx.doi.org/10.1109/TPWRS.2003.811180.
    6. 6)
    7. 7)
      • 16. Abdou, A.F., Abu-Siada, A., Pota, H.: ‘Damping of subsynchronous oscillations and improve transient stability for wind farms’. 2011 IEEE PES Innovative Smart Grid Technologies Asia (ISGT), 2011, pp. 16. Available at http://www.dx.doi.org/10.1109/ISGT-Asia.2011.6167077.
    8. 8)
    9. 9)
      • 3. Pena, R., Clare, J., Asher, G.: ‘Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation’, IEE Proc. Electr. Power Appl., 1996, 143, pp. 231241. Available at http://www.dx.doi.org/10.1049/ip-epa:19960288.
    10. 10)
    11. 11)
      • 8. Avagliano, A., Barbu, C., Suryanarayanan, S.: ‘Vibration damping method for variable speed wind turbines’. US Patent 7,423,352, 2008.
    12. 12)
      • 11. Ullah, N.R., Thiringer, T., Karlsson, D.: ‘Operation of wind energy installations during power network disturbances’. IEEE Int. IEEE Electric Machines & Drives Conf., 2007, IEMDC'07, 2007, vol. 2, pp. 13961400.
    13. 13)
    14. 14)
      • 20. Yamamoto, M., Motoyoshi, O.: ‘Active and reactive power control for doubly-fed wound rotor induction generator’, IEEE Trans. Power Electron., 1991, 6, pp. 624629. Available at http://www.dx.doi.org/10.1109/63.97761.
    15. 15)
    16. 16)
      • 6. Licari, J., Ugalde-Loo, C., Ekanayake, J., Jenkins, N.: ‘Damping of torsional vibrations in a variable-speed wind turbine’, IEEE Trans. Energy Convers., 2013, 28, pp. 172180. Available at http://www.dx.doi.org/10.1109/TEC.2012.2224868.
    17. 17)
      • 2. Slootweg, J., De Haan, S.W.H., Polinder, H., Kling, W.: ‘General model for representing variable speed wind turbines in power system dynamics simulations’, IEEE Trans. Power Syst., 2003, 18, pp. 144151. Available at http://www.dx.doi.org/10.1109/TPWRS.2002.807113.
    18. 18)
      • 9. Fadaeinedjad, R., Moschopoulos, G., Moallem, M.: ‘Voltage sag impact on wind turbine tower vibration’. Power Engineering Society General Meeting, 2007, IEEE, 2007, pp. 18.
    19. 19)
    20. 20)
    21. 21)
      • 7. Burton, T., Jenkins, N., Sharpe, D., Bossanyi, E.: ‘Wind energy handbook’ (John Wiley & Sons, Chichester, 2011).
    22. 22)
    23. 23)
      • 19. Iov, F., Hansen, A.D., Sorensen, P., Blaabjerg, F.: ‘Wind turbine blockset in MATLAB/SIMULINK’ (Aalborg University, 2004).
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2015.0029
Loading

Related content

content/journals/10.1049/joe.2015.0029
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading