Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Defect-tolerance analysis of fundamental quantum-dot cellular automata devices

Quantum-dot cellular automata (QCA) is a burgeoning technology at the nano-scale range, with the potential for lower power consumption, smaller size and faster speed than conventional complementary metal–oxide semiconductor-based technology. Because of its ultra-density integration and its inherent physical properties, fault-tolerance is an important property to consider in the research and manufacture of QCA. In this paper, one type of defect, in which displacement and misalignment occur coinstantaneously, is investigated in detail on rudimentary QCA devices (majority voter (MV), inverter, wire) with QCADesigner. Another MV with rotated cells is also proposed, and it is more robust than the original one. Simulation results present the defect-tolerance of these devices, that is, the maximum precise region the defective cell can be moved moreover, with correct logical function. These conclusions have a meaningful guiding significance for QCA physical implementation and fault-tolerance research.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • 27. Farazkish, R., Sayedsalehi, S., Navi, K.: ‘Novel design for quantum dots cellular automata to obtain fault tolerant majority gate’, J. Nanotechnol., 2012, 2012. Article ID 943406, 7 pages, http://dx.doi.org/10.1155/2012/943406.
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 11. Dysart, T.J., Kogge, P.M.: ‘Organizing wires for reliability in magnetic QCA’, ACM J. Emerg. Technol. Comput. Syst. (JETC), 2009, 5, (4), p. 19.
    20. 20)
    21. 21)
      • 28. Das, K., De, D.: ‘QCA defect and fault analysis of diverse nanostructure for implementing logic gate’, Int. J. Recent Trends Eng. Technol., 2010, 3, (1), pp. 15.
    22. 22)
    23. 23)
    24. 24)
    25. 25)
      • 21. Tahoori, M.B., Momenzadeh, M., Huang, J., Lombardi, F.: ‘Defects and faults in quantum cellular automata at nano scale’. Proc. of 22nd IEEE on VLSI Test Symp., 2004, pp. 291296.
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
      • 29. Momenzadeh, M., Ottavi, M., Lombardi, F.: ‘Modeling QCA defects at molecular-level in combinational circuits’. 20th IEEE Int. Symp. on Defect and Fault Tolerance in VLSI Systems, 2005, pp. 208216.
    32. 32)
    33. 33)
      • 27. Farazkish, R., Sayedsalehi, S., Navi, K.: ‘Novel design for quantum dots cellular automata to obtain fault tolerant majority gate’, J. Nanotechnol., 2012, 2012. Article ID 943406, 7 pages, http://dx.doi.org/10.1155/2012/943406.
    34. 34)
    35. 35)
    36. 36)
      • 9. Dysart, T.J., Kogge, P.M., Lent, C.S., Liu, M.: ‘An analysis of missing cell defects in quantum-dot cellular automata’. IEEE Int. Workshop on Design and Test of Defect-Tolerant Nanoscale Architectures (NANOARCH), 2005.
    37. 37)
      • 22. Momenzadeh, M., Tahoori, M.B., Huang, J., Lombardi, F.: ‘Quantum cellular automata new defects and faults for new devices’. Proc. of 18th Int. Parallel Distributed Processing Symp., 2004, vol. 207.
    38. 38)
    39. 39)
      • 13. Dysart, T.J., Kogge, P.M.: ‘Strategy and prototype tool for doing fault modeling in a nano-technology’. Third IEEE Conf. on Nanotechnology, 2003, 1, pp. 356359.
    40. 40)
    41. 41)
      • 15. Bhanja, S., Sarkar, S.: ‘Graphical probabilistic inference for ground state and near-ground state computing in QCA circuits’. Proc. of 2005 Fifth IEEE Conf. on Nanotechnology, 2005, pp. 290293.
    42. 42)
    43. 43)
      • 8. Sen, B., Dalui, M., Sikdar, B.K.: ‘Introducing universal QCA logic gate for synthesizing symmetric functions with minimum wire-crossings’. Int. Conf. and Workshop on Emerging Trends in Technology, 2010, pp. 828833.
    44. 44)
      • 19. Huang, J., Momenzadeh, M., Tahoori, M.B., Lombardi, F.: ‘Defect characterization for scaling of QCA devices’. Proc. of the 19th IEEE Int. Symp. on Defect and Fault Tolerance in VLSI Systems, 2004, pp. 3038.
    45. 45)
      • 14. Bhanja, S., Sribastava, S.: ‘A Bayesian computing model for QCAs’. Nanotechnology Conf., 2005.
    46. 46)
    47. 47)
    48. 48)
      • 26. Srivastava, S.: ‘Probabilistic modeling of quantum-dot cellular automata’. PhD thesis, Department of Electrical Engineering College of Engineering, University of South Florida, 2008.
    49. 49)
      • 20. Tahoori, M.B., Momenzadeh, M., Huang, J., Lombardi, F.: ‘Defects and fault characterization in quantum cellular automata’, Proc. Nanotechnol., 2004, 3, pp. 190193.
    50. 50)
      • 2. Das, K., De, D.: ‘A novel approach of and-or-inverter (AOI) gate design for QCA’. Int. Conf. on Computers and Devices for Communication, 2009, pp. 6467.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2014.0344
Loading

Related content

content/journals/10.1049/joe.2014.0344
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address