Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Kinematics, dynamics and control design of 4WIS4WID mobile robots

Kinematic and dynamic modelling and corresponding control design of a four-wheel-independent steering and four-wheel-independent driving (4WIS4WID) mobile robot are presented in this study. Different from the differential or car-like mobile robot, the 4WIS4WID mobile robot is controlled by four steering and four driving motors, so the control scheme should possess the ability to integrate and manipulate the four independent wheels. A trajectory tracking control scheme is developed for the 4WIS4WID mobile robot, where both non-linear kinematic control and dynamic sliding-mode control are designed. All of the stabilities of the kinematic and dynamic control laws are proved by Lyapunov stability analysis. Finally, the feasibility and validity of the proposed trajectory tracking control scheme are confirmed through computer simulations.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
      • 24. Lin, C.J., Hsiao, S.M., Wang, Y.H., Yeh, C.H., Huang, C.F., Li, T.H.S.: ‘Design and implementation of a 4WS4WD mobile robot and its control applications’. Proc. IEEE Int. Conf. on Systems Science and Engineering, Budapest, Hungary, 2013, pp. 235240.
    27. 27)
      • 13. Yi, J., Song, D., Zhang, J., Goodwin, Z.: ‘Adaptive trajectory tracking control of skid-steered mobile robots’. Proc. IEEE Int. Conf. on Robotics and Automation, 2007, pp. 26052610.
    28. 28)
    29. 29)
      • 26. Jiang, S.Y., Song, K.T.: ‘Differential flatness-based motion control of a steer-and-drive omnidirectional mobile robot’. Proc. IEEE Int. Conf. on Mechatronics and Automation 2013, Takamatsu, Japan, August 2013, pp. 11671172.
    30. 30)
    31. 31)
      • 4. Kumar, U., Sukavanam, N.: ‘Backstepping based trajectory tracking control of a four wheeled mobile robot’, Int. J. Adv. Robot. Syst., 2008, 5, (4), pp. 403410.
    32. 32)
    33. 33)
    34. 34)
      • 1. Yeh, Y.C., Li, T.H.S., Chen, C.Y.: ‘Adaptive fuzzy sliding-mode control of dynamic model based car-like mobile robot’, Int. J. Fuzzy Syst., 2009, 11, (4), pp. 272286.
    35. 35)
    36. 36)
      • 22. Clavien, L., Lauria, M., Michaud, F.: ‘Instantaneous centre of rotation estimation of an omnidirectional mobile robot’. Proc. IEEE Int. Conf. on Robotics and Automation, Anchorage, AK, USA, 2010, pp. 54355440.
    37. 37)
      • 23. Ploeg, J., van der Knaap, A.C.M., Verburg, D.J.: ‘ATS/AGV-design, implementation and evaluation of a high performance AGV’. Proc. IEEE Intelligent Vehicles Symp., 2002, 1, pp. 127134.
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
    47. 47)
      • 21. Connette, C.P., Pott, A., Hägele, M., Verl, A.: ‘Control of an pseudo-omnidirectional, non-holonomic, mobile robot based on an ICM representation in spherical coordinates’. Proc. IEEE Int. Conf. on Decision and Control, Cancun, Mexico, 2008, pp. 49764983.
    48. 48)
      • 20. Qian, H., Lam, T.L., Li, W., Xia, C., Xu, Y.: ‘System and design of an omni-directional vehicle’. Proc. IEEE Int. Conf. on Robotics and Biomimetics, Bangkok, Thailand, 2009, pp. 389394.
    49. 49)
      • 27. Selekwa, M.F., Nistler, J.R.: ‘Path tracking control of four wheel independently steered ground robotic vehicles’. Proc. IEEE Conf. on Decision and Control and European Control Conf. (CDC-ECC), Orlando, FL, USA, December 2011, pp. 63556360.
    50. 50)
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2014.0241
Loading

Related content

content/journals/10.1049/joe.2014.0241
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address