access icon openaccess Mathematical analysis for detection probability in cognitive radio networks over wireless communication channels

In this study, the authors consider the problem of spectrum sensing based on energy detection method in cognitive radio over wireless communication channels when users experience fading and non-fading effects. The closed-form analytical expressions for the detection probability are derived over non-fading additive white Gaussian noise channel and Rayleigh and log-normal shadowing fading channels. The detection probability involves Marcum-Q function, summations and integrations in the early research papers, which are replaced by closed-form expressions in this study. The probability distribution function of fading channels is used to obtain the expressions for detection probability. The new derived numerical results are simulated under various parameters. The performance of the derived theoretical expressions closely matches with the simulated results.

Inspec keywords: Rayleigh channels; fading channels; signal detection; wireless channels; Gaussian noise; mathematical analysis; radio spectrum management; cognitive radio

Other keywords: mathematical analysis; lognormal shadowing fading channels; Marcum-Q function; nonfading additive white Gaussian noise channel; probability distribution function; analytical expressions; cognitive radio networks; nonfading effects; detection probability; wireless communication channels; Rayleigh shadowing fading channels; spectrum sensing; closed-form expressions; energy detection method

Subjects: Signal detection; Other topics in statistics; Mathematical analysis; Radio links and equipment

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
      • 24. Gradshteyn, I.S., Ryzhik, I.M.: ‘Tables of integrals, series, and products’, 7th edn. (Elsevier Academic Press, 2007).
    19. 19)
      • 1. Kolodzy, P., Avoidance, I., Models, S.: ‘Spectrum policy task force’. Federal Communications Commission, Washington, DC, Report ET Docket, 2002.
    20. 20)
      • 5. Kim, K., Akbar, I.A., Bae, K.K., Um, J.S., Spooner, C.M., Reed, J.H.: ‘Cyclostationary approaches to signal detection and classification in cognitive radio’. DySPAN2007, April 2007, pp. 212215.
    21. 21)
    22. 22)
      • 21. András, S., Baricz, Á., Sun, Y.: ‘The generalized Marcum-Q function: an orthogonal polynomial approach’, Acta Univ. Sapientiae Math., 2011, 3, (1), pp. 6076.
    23. 23)
      • 23. Simon, M.K., Alouini, M.-S.: ‘Digital communications over fading channels’ (John Wiley and Sons, Inc., 2004, 2nd edn.).
    24. 24)
      • 22. Altrad, O., Muhaidat, S.: ‘A new mathematical analysis of the probability of detection in cognitive radio over fading ‘channels’, EURASIP J. Wirel. Commun. Netw.2013, 2013, (159), doi: 10.1186/1687-1499-2013-159.
    25. 25)
    26. 26)
      • 19. Proakis, J.G., Salehi, M.: ‘Digital communications’ (McGraw-Hill, New York, 2008), pp. 4647.
    27. 27)
    28. 28)
      • 8. Kostylev, V.I.: ‘Energy detection of a signal with random amplitude’. Proc. IEEE Int. Conf. Commun., May 2002, pp. 16061610.
    29. 29)
    30. 30)
    31. 31)
      • 2. Haykin, S.: ‘Cognitive radio: brain-empowered wireless communications’, IEEE Trans. Commun., 2005, 23, pp. 201220.
    32. 32)
      • 20. Abramowitz, M., Stegun, I.A.: ‘Handbook of mathematical functions with formulas, graphs, and mathematical tables’ (Dover, New York, 1974).
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2014.0173
Loading

Related content

content/journals/10.1049/joe.2014.0173
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading