access icon openaccess A 65 nm CMOS broadband self-calibrated power detector for the square kilometre array radio telescope

In this study, a 65 nm complementary metal oxide semiconductor (CMOS) broadband self-calibrated high-sensitivity power detector for use in the Square Kilometre Array (SKA), the next-generation high-sensitivity radio telescope, is presented. The power detector calibration is performed by adjusting voltages at the bulk terminals of the input transistors to compensate for mismatches in the output voltages because of process, voltage and temperature variations. Measurements show that the power detector, preceded by an input power-match circuit with 6 dB gain, has an input signal range from −48 to −11 dBm over which a 0.95 dB maximum error in the detected power is observed when the calibration rate is 20 kHz. The proposed broadband power detector has a 3 dB upper band edge of 1.8 GHz, which adequately covers the midband SKA frequency range from 0.7 to 1.4 GHz. The settling time and the calibration time are both <5 μs. The circuit consumes 1.2 mW from a 1.2 V power supply and the input-match circuit consumes another 5.8 mW. The presented power detector achieves the best combination of the detection range and sensitivity of previously published circuits.

Inspec keywords: MIS devices; calibration; radiotelescopes

Other keywords: complementary metal oxide semiconductor; input signal range; next-generation high-sensitivity radio telescope; broadband self-calibrated power detector; input power-match circuit; SKA frequency range; square kilometre array radio telescope

Subjects: Semiconductor devices; Measurement standards and calibration; Antenna arrays; Radiotelescopes; Radioastronomical techniques and equipment; Measurement standards and calibration

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
      • 5. Imbriale, W.: ‘The square kilometre array: engineering opportunities’. IEEE Int. Conf. on Wireless Information Technology and Systems (ICWITS), 2010, p. 1.
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
      • 18. Gorisse, J., Cathelin, A., Kaiser, A., Kerherve, E.: ‘A 60 GHz 65 nm CMOS RMS power detector for antenna impedance mismatch detection’. Proc. of ESSCIRC, Athens, Greece, September 2009, pp. 172175.
    28. 28)
    29. 29)
      • 23. Francois, B., Raynaert, P.: ‘A transformer-coupled true-rms power detector in 40 nm CMOS’. ISSCC Digest Technical Papers, February 2014, pp. 6263.
    30. 30)
    31. 31)
    32. 32)
      • 4. Dewdney, P., Hall, P., Schilizzi, R., Lazio, T.: ‘The square kilometre array’. Proc. of the IEEE, August 2009, vol. 97, pp. 14821496.
    33. 33)
    34. 34)
    35. 35)
      • 3. Wu, G., Belostotski, L., Haslett, J.: ‘A broadband automatic gain control amplifier for the square kilometer array’. Eighth IEEE Int. NEWCAS Conf. (NEWCAS), Montreal, Canada, June 2010, pp. 153156.
    36. 36)
      • 9. Xu, Y., Belostotski, L., Haslett, J.W.: ‘A 65-nm CMOS 10-GS/s 4 bit background-calibrated non-interleaved flash ADC for radio astronomy’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2014, doi:10.1109/TVLSI.2013.2291563.
    37. 37)
      • 7. Wu, G., Belostotski, L., Haslett, J.: ‘A broadband variable gain amplifier for the square kilometer array’. 2013 IEEE Int. Symp. on Circuits and Systems (ISCAS), Beijing, China, June 2013, pp. 22672270.
    38. 38)
    39. 39)
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2014.0164
Loading

Related content

content/journals/10.1049/joe.2014.0164
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading