access icon openaccess CMOS time-to-digital converters for mixed-mode signal processing

This study provides an in-depth review of the principles, architectures and design techniques of CMOS time-to-digital converters (TDCs). The classification of TDCs is introduced. It is followed by the examination of the parameters quantifying the performance of TDCs. Sampling TDCs including direct-counter TDCs, tapped delay-line TDCs, pulse-shrinking delay-line TDCs, cyclic pulse-shrinking TDCs, direct-counter TDCs with interpolation, vernier TDCs, flash TDCs, successive approximation TDCs and pipelined TDCs are studied and their pros and cons are compared. Noise-shaping TDCs that reduce in-band noise below technology limit are investigated. These TDCs include gated ring oscillator TDCs, switched ring oscillator TDCs, relaxation oscillator TDCs, ΔΣ TDCs and MASH TDCs. The performance of sampling and noise-shaping TDCs is compared. The direction of future research on TDCs is explored.

Inspec keywords: time-digital conversion; oscillators; sigma-delta modulation; delay lines; CMOS integrated circuits

Other keywords: relaxation oscillator TDC; pipelined TDC; mixed-mode signal processing; CMOS time-to-digital converters; sampling TDC; pulse-shrinking delay line TDC; cyclic pulse-shrinking TDCs; tapped delay line TDC; switched ring oscillator TDC; flash TDC; successive approximation TDC; direct-counter TDCs; MASH TDC; ΔΣ TDC; vernier TDC; noise-shaping TDC

Subjects: CMOS integrated circuits; Digital circuit design, modelling and testing; A/D and D/A convertors

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
      • 102. Gande, M., Maghari, N., Oh, T., Moon, U.: ‘A 71 dB dynamic range third-order ΔΣ TDC using charge-pump’. Symp. VLSI Circuits Digest of Technical Papers, 2012, pp. 168169.
    17. 17)
    18. 18)
      • 78. Roberts, G., Ali-Bakhshian, M.: ‘A brief introduction to time-to-digital and digital-to-time converters’, IEEE J. Solid-State Circuits, 2010, 57, (3), pp. 153157.
    19. 19)
    20. 20)
      • 103. Kim, S.: ‘Time domain algebraic operation circuits for high performance mixed-mode system’. MS thesis, Korean Advanced Institute of Science and Technology, 2010.
    21. 21)
      • 87. Elshazly, A., Rao, S., Young, B., Hanumolu, P.: ‘A 13b 315 fs,rms 2 mW 500 MS/s 1 MHz bandwidth highly digital time-to-digital converter using switched ring oscillators’. Int. Solid-State Circuits Conf. Digest of Technical Papers, 2012, pp. 464465.
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
      • 19. Hong, J., Kim, S., Liu, J., et al: ‘A 0.004 mm2 250 μW ΔΣ TDC with time-difference accumulator and a 0.012 mm2 2.5 mW bang-bang digital PLL using PRNG for low-power SoC applications’. IEEE Int. Conf. Solid-State Circuits Digest of Technical Papers, 2012, pp. 240242.
    30. 30)
    31. 31)
      • 99. Yuan, F.: ‘CMOS circuits for passive wireless microsystems’ (Springer, New York, 2010).
    32. 32)
      • 69. Lee, S., Seo, Y., Park, H., Sim, J.: ‘A 1 GHz ADPLL with a 125 ps minimum-resolution sub-exponent TDC in 0.18 μm CMOS’, IEEE J. Solid-State Circuits, 2010, 45, (12), pp. 28272881.
    33. 33)
      • 96. Cao, Y., Leroux, P., Cock, W.D., Steyaert, M.: ‘A 0.7 mW 13b temperature-stable MASH ΔΣ TDC with delay-line assisted calibration’. Proc. IEEE Asian Solid-State Circuits Conf., 2011, pp. 361364.
    34. 34)
      • 79. Li, S., Salthouse, C.: ‘Digital-to-time converter for fluorescence lifetime imaging’. Proc. IEEE Int. Instrumentation and Measurement Technology Conf., 2012, pp. 894897.
    35. 35)
      • 57. Kwon, H., Lee, J., Sim, J., Park, H.: ‘A high-gain wide-input-range time amplifier with an open-loop architecture and a gain equal to current bias ratio’. Proc. IEEE Asian Solid-State Circuits Conf., 2011, pp. 325328.
    36. 36)
    37. 37)
      • 47. Mantyniemi, A., Rahkonen, T., Kostamovaara, J.: ‘A high-resolution digital CMOS time-to-digital converter based on nested delay locked loops’. Proc. IEEE Int. Symp. Circuits Systems, 1999, vol. 2, pp. 537540.
    38. 38)
    39. 39)
    40. 40)
      • 46. Liu, Y., Vollenbruch, U., Chen, Y., et al: ‘A 6 ps resolution pulse shrinking time-to-digital converter as phase detector in multi-mode transceiver’. Proc. IEEE Radio and Wireless Symp., 2008, pp. 163166.
    41. 41)
      • 88. Konishi, T., Okumo, K., Izumi, S., Yoshimoto, M., Kawaguchi, H.: ‘A 61 dB SNDR 700 μm second-order all-digital TDC with low-jitter frequency shift oscillator and dynamic flipflops’. Symp. VLSI Circuits Digest of Technical Papers, 2012, pp. 190191.
    42. 42)
      • 84. Seo, Y., Kim, J., Park, H., Sim, J.: ‘A 0.63 ps resolution 11 b pipeline TDC in 0.13 μm CMOS’. Symp. VLSI Circuits Digest of Technical Papers, 2011, pp. 152153.
    43. 43)
    44. 44)
      • 39. Knotts, T., Chu, D., Sommer, J.: ‘A 500 MHz time digitizer IC with 15.625 ps resolution’. IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers, 1994, pp. 5859.
    45. 45)
      • 67. Mandai, S., Nakura, T., Ikeda, M., Asada, K.: ‘Cascaded time difference amplifier using differential logic delay cell’. Proc. Int. SoC Design Conf., 2009, pp. 299304.
    46. 46)
      • 34. Minas, N., Kinniment, D., Heron, K., Russell, G.: ‘A high resolution flash time-to-digital converter taking into account process variability’. Proc. IEEE Int. Symp. Asynchronous Circuits and Systems, 2007, pp. 163174.
    47. 47)
      • 9. Yousefzadeh, B., Sharifkhani, M.: ‘An audio band low voltage CT-ΔΣ modulator with VCO-based quantizer’. Proc. IEEE Int. Conf. Electronics, Circuits Systems, 2011, pp. 232235.
    48. 48)
    49. 49)
    50. 50)
    51. 51)
    52. 52)
    53. 53)
    54. 54)
    55. 55)
    56. 56)
    57. 57)
    58. 58)
    59. 59)
    60. 60)
    61. 61)
    62. 62)
    63. 63)
    64. 64)
    65. 65)
    66. 66)
    67. 67)
    68. 68)
    69. 69)
    70. 70)
    71. 71)
    72. 72)
    73. 73)
    74. 74)
    75. 75)
    76. 76)
    77. 77)
    78. 78)
    79. 79)
    80. 80)
    81. 81)
    82. 82)
    83. 83)
      • 80. Seo, Y., Kim, J., Park, H., Sim, J.: ‘A 0.63 ps resolution, 11 b pipeline TDC in 0.13 μm CMOS’. Symp. VLSI Circuits Digest of Technical Papers, 2012, pp. 152153.
    84. 84)
    85. 85)
    86. 86)
      • 36. Zanuso, M., Levantino, S., Puggelli, A., Samori, C., LacaitA, A.: ‘Time-to-digital converter with 3-ps resolution and digital linearization algorithm’. Proc. IEEE ESSCIRC, 2010, pp. 262265.
    87. 87)
    88. 88)
      • 75. Nagaraj, G., Miller, S., Stengel, B., et al: ‘A self-calibrating sub-picosecond resolution digital-to-time converter’. Proc. IEEE Int. Microwave Symp., 2007, pp. 22012204.
    89. 89)
    90. 90)
      • 73. Li, G., Chou, H.: ‘A high resolution time-to-digital converter using two-level vernier delay line technique’. Proc. IEEE Nuclear Science Symp. Conf. Record, 2007, pp. 276280.
    91. 91)
      • 104. Wismar, U., Wisland, D., Andreani, P.: ‘A 0.2 V 0.44 μW 20 kHz analog to digital ΔΣ modulator with 57 fJ/conversion FoM’. Proc. IEEE European Solid-State Circuits Conf., 2006, pp. 187190.
    92. 92)
      • 33. Gutnik, V., Chandrakasan, A.: ‘On-chip picosecond time measurement’. Symp. VLSI Circuits Digest of Technical Papers, 2000, pp. 5253.
    93. 93)
    94. 94)
    95. 95)
      • 95. Cao, Y., Leroux, P., Cock, W.D., Steyaert, M.: ‘A 0.7 mW 11b 1-1-1 MASH ΔΣ time-to-digital converter’. IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers, 2011, pp. 480481.
    96. 96)
    97. 97)
      • 94. Chung, S., Hwang, K., Lee, W., Kim, L.: ‘A high resolution metastability-independent two-step gated ring oscillator TDC with enhanced noise shaping’. Proc. IEEE Int. Symp. Circuits Systems, 2010, pp. 13001303.
    98. 98)
      • 13. Ravinuthula, V.: ‘Time-mode circuits for analog computations’. PhD dissertation, University of Florida, 2006.
    99. 99)
      • 77. Al-Ahdab, S., Mantyniemi, A., Kostamovaara, J.: ‘A 12-bit digital-to-time converter (DTC) for time-to-digital converter (TDC) and other time domain signal processing applications’. Proc. IEEE NORCHIP, 2010, pp. 14.
    100. 100)
      • 82. Kim, K., Yu, W., Cho, S.: ‘A 9b 1.12 ps resolution 2.5b/stage pipelined time-to-digital converter in 65 nm CMOS using time-register’. Symp. VLSI Circuits Digest of Technical Papers, 2013, pp. 136137.
    101. 101)
      • 100. Konishi, T., Okumo, K., Izumi, S., Yoshimoto, M., Kawaguchi, H.: ‘A 40-nm 640-μm2 45-dB opampless all-digital second-order MASH ΔΣ ADC’. Proc. IEEE Int. Symp. Circuits Systems, 2011, pp. 518521.
    102. 102)
    103. 103)
      • 3. Park, K., Park, J.: ‘20 ps resolution time-to-digital converter for digital storage oscillator’. Proc. IEEE Nuclear Science Symp., 1998, vol. 2, pp. 876881.
    104. 104)
      • 27. Aria, Y., Matsumura, T., Endo, K.: ‘A CMOS four-channel × 1 K memory LSI with 1-ns/b resolution’, IEEE Trans. Circuits Syst. II, 1992, 27, (3), pp. 359364.
    105. 105)
    106. 106)
    107. 107)
    108. 108)
    109. 109)
      • 90. Konishi, T., Okumo, K., Izumi, S., Yoshimoto, M., Kawaguchi, H.: ‘A 51 dB SNDR DCO-based TDC using two-stage second-order noise shaping’. Proc. IEEE Int. Symp. Circuits Systems, 2012, pp. 31703173.
    110. 110)
      • 60. Oulmane, M., Roberts, G.: ‘CMOS time amplifier for femto-second resolution timing measurement’. Proc. IEEE Int. Symp. Circuits Systems, 2004, pp. 509512.
    111. 111)
    112. 112)
    113. 113)
      • 12. Guttman, M., Roberts, G.: ‘K-locked-loop and its application in time mode ADC’. Proc. IEEE Int. Symp. Integrated Circuits, 2009, pp. 101104.
    114. 114)
      • 37. Yao, C., Jonsson, F., Chen, J., Zheng, L.: ‘A high-resolution time-to-digital converter based on parallel delay elements’. Proc. IEEE Int. Symp. Circuits Systems, 2012, pp. 31583161.
    115. 115)
    116. 116)
    117. 117)
    118. 118)
      • 89. Hwang, K., Kim, L.: ‘An area efficient asynchronous gated ring oscillator TDC with minimum GRO stages’. Proc. IEEE Int. Symp. Circuits Systems, 2010, pp. 39733976.
    119. 119)
      • 40. Henzler, S., Koeppe, S., Kamp, W., Schmitt-Landsiedel, D.: ‘90 nm 4.7 ps-resolution 0.7-LSB single-shot precision and 19 pJ-per-shot local passive interpolation time-to-digital converter with on-chip characterization’. IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers, 2008, pp. 548635.
    120. 120)
      • 45. Liu, Y., Vollenbruch, U., Chen, Y., et al: ‘Multi-stage pulse shrinking time-to-digital converter for time interval measurements’. Proc. European Conf. Wireless Technology, 2007, pp. 347350.
    121. 121)
    122. 122)
    123. 123)
    124. 124)
      • 76. Choi, Y., Yoo, S., Yoo, H.: ‘A full digital polar transmitter using a digital-to-time converter for high data rate system’. Proc. IEEE Int. Symp. Radio-Frequency Integration Technology, 2009, pp. 5659.
    125. 125)
      • 26. Rahkonen, T., Kostamovaara, J., Saynajakangas, S.: ‘Time interval measurements using integrated tapped CMOS delay lines’. Proc. IEEE Mid-West Symp. Circuits Systems, 1990, pp. 201205.
    126. 126)
      • 48. Huang, H., Wu, S., Tsai, Y.: ‘A new cycle-time-to-digital converter with two level conversion scheme’. Proc. IEEE Int. Symp. Circuits Systems, 2007, pp. 21602163.
    127. 127)
    128. 128)
      • 65. Lin, C., Syrzycki, M.: ‘Pico-second time interval amplification’. Proc. IEEE Int. SoC Design Conf., 2010, pp. 201204.
    129. 129)
      • 20. Rashdan, M., Yousif, A., Haslett, J., Maundy, B.: ‘A new time-based architecture for serial communication links’. Proc. IEEE Int. Conf. Electronics, Circuits, Systems, 2009, pp. 531534.
    130. 130)
      • 91. Lu, P., Wu, Y., Andreani, P.: ‘A 90 nm CMOS digital PLL based on vernier-gated-ring-oscillator time-to-digital converter’. Proc. IEEE Int. Symp. Circuits Systems, 2012, pp. 25932596.
    131. 131)
      • 101. Okuno, K., Konishi, T., Izumi, S., Yoshimoto, M., Kawaguchi, H.: ‘A 62 dB SNDR second-order gated ring oscillator TDC with two-stage dynamic D-type flipflips a a quantization noise propagator’. Proc. IEEE NEWCAS, 2012, pp. 289292.
    132. 132)
      • 66. Nakura, T., Mandai, S., Ikeda, M., Asada, K.: ‘Time difference amplifier using closed-loop gain control’. Symp. VLSI Circuits Digest of Technical Papers, 2009, pp. 208209.
    133. 133)
      • 1. Yoshiaki, T., Takeshi, A.: ‘Simple voltage-to-time converter with high linearity’, IEEE Trans. Instrum. Meas., 1971, 20, (2), pp. 120122.
    134. 134)
      • 53. Kurko, B.: ‘A picosecond resolution time digitizer for laser ranging’, IEEE Trans. Nucl. Sci., 1978, NS-25, (1), pp. 7580.
    135. 135)
      • 93. Lu, P., Andreani, P., Liscidini, A.: ‘A 2-D GRO vernier time-to-digital converter with large input range and small latency’. Proc. IEEE RFIC, 2013, pp. 151154.
    136. 136)
      • 8. Park, M., Perrott, M.: ‘A single-slope 80 Ms/s ADC using two-step time-to-digital conversion’, Proc. IEEE Int. Symp. Circuits Syst., 2009, pp. 11251128.
    137. 137)
      • 35. Yamaguchi, T., Komatsu, S., Abbas, M., Asada, K., Maikhanh, N., Tandon, J.: ‘A CMOS flash TDC with 0.84-1.3 ps resolution using standard cells’. Proc. IEEE RFIC, 2012, pp. 527530.
    138. 138)
      • 18. Ghaffari, A., Abrishamifar, A.: ‘A novel wide-range delay cell for DLLs’. Proc. IEEE Int. Electrical and Computer Engineering Conf., 2006, pp. 497500.
    139. 139)
    140. 140)
      • 31. Levine, P., Roberts, G.: ‘A calibration technique for a high-resolution flash time-to-digital converter’. Proc. IEEE Int. Symp. Circuits Systems, 2004, vol. 1, pp. 253256.
    141. 141)
    142. 142)
    143. 143)
    144. 144)
      • 61. Tong, B., Yan, W., Zhou, X.: ‘A constant-gain time-amplifier with digital self-calibration’. Proc. IEEE Int. ASIC Conf., 2009, pp. 11331136.
    145. 145)
    146. 146)
    147. 147)
    148. 148)
      • 86. Schreier, R., Temes, G.: ‘Understanding delta–sigma data converters’ (John Wiley & Sons, Hoboken, NJ, 2005).
    149. 149)
      • 108. Rao, S., Young, B., Elshazly, A., Yin, W., Sasidhar, N., Hanumolu, P.: ‘A 71 dB SFDR open loop VCO-based ADC using 2-level PWM modulation’. Symp. VLSI Circuits Digest of Technical Papers, 2011, pp. 270271.
    150. 150)
    151. 151)
      • 109. Ng, A., Zheng, S., Luong, H.: ‘A 4.1 GHz-6.5 GHz all-digital frequency synthesizer with a 2nd-order noise-shaping TDC and a transformer-coupled QVCO’. Proc. IEEE ESSCIRC, 2012, pp. 189192.
    152. 152)
    153. 153)
      • 25. Henzler, S.: ‘Time-to-digital converters’ (Springer, New York, 2010).
    154. 154)
    155. 155)
    156. 156)
    157. 157)
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2014.0044
Loading

Related content

content/journals/10.1049/joe.2014.0044
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading