Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Device and circuit performance analysis of double gate junctionless transistors at L g = 18 nm

The design and characteristics of double-gate (DG) junctionless (JL) devices are compared with the DG inversion-mode (IM) field effect transistors (FETs) at 45 nm technology node with effective channel length of 18 nm. The comparison are performed at iso-V th for both n- and p-type of devices. The JL device shows lower drain-induced barrier lowering, steep subthreshold slope and lower OFF state current. For the first time, the authors demonstrate a pass gate (PG) logic, inverter circuit and static random access memory (SRAM) stability analysis using JL devices, rather than a complementary metal-oxide semiconductor (CMOS) configuration. They observed that transient response of JL PG configuration is similar to that of conventional CMOS PGs. JL inverter also shows similar transient characteristics with 25% reduction in delay and 12% improvement in 6 T SRAM cell stability compared with IMFETs, which shows large potential in digital circuit applications. The simulations were performed using coupled device-circuit methodology in ATLAS technology aided computer design (TCAD) mixed-mode simulator.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
      • 17. International Technology Roadmaps for Semiconductor, ITRS, London, UK, 2008 ed., 2008.
    17. 17)
    18. 18)
    19. 19)
      • 19. A.U. Manual. Device simulation software. In Silvaco Int., Santa Clara, CA, 2008.
    20. 20)
      • 13. Lilienfeld, J.E.: ‘Method and apparatus for controlling electric cur-rent’. U.S. Patent 1 745 175, 1925.
    21. 21)
    22. 22)
      • 6. Jeon, D.-Y., Park, S.J., Mouis, M., Barraud, S., Kim, G.-T., Ghibaudo, G.: ‘A new method for the extraction of flat-band voltage and doping concentration in tri-gate Junctionless transistors’, J. Solid-State Electron., 81, (2013), pp. 113118.
    23. 23)
    24. 24)
    25. 25)
      • 5. Park, C.-H., Ko, M.-D., Kim, K.-H., et al: ‘Electrical characteristics of 20-nm junctionless Si nanowire transistors’, Solid State Electron., 2012, 73, (7), p. 710.
    26. 26)
      • 2. Colinge, J.P., Gao, M.H., Romano, A., Maes, H., Claeys, C.: ‘Silicon-on-insulator gate-all-around device’. IEDM Technical Digest, 1990, pp. 595598.
    27. 27)
    28. 28)
      • 24. Razavi, P., Ferain, I., Das, S., Yu, R., Akhavan, N.D., Colinge, J.: ‘Intrinsic gate delay and energy-delay product in junctionless nanowire transistors’. 2012 13th Int. Conf. Ultimate Integration on Silicon (ULIS), 6–7 March 2012, pp. 125128.
    29. 29)
      • 1. Lee, C.W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Colinge, J.P.: ‘Junctionless multigate field-effect transistor’, Appl. Phys. Lett., 2009, 94, pp. 053511-1053511-2.
    30. 30)
    31. 31)
    32. 32)
      • 11. Lee, C.W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Colinge, J.P.: ‘Junctionless multigate field-effect transistor’, Appl. Phys. Lett., 2009, 94, pp. 10535111053511-2.
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2013.0269
Loading

Related content

content/journals/10.1049/joe.2013.0269
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address