access icon openaccess Mechanical design and optimal control of humanoid robot (TPinokio)

The mechanical structure and the control of the locomotion of bipedal humanoid is an important and challenging domain of research in bipedal robots. Accurate models of the kinematics and dynamics of the robot are essential to achieve bipedal locomotion. Toe-foot walking produces a more natural and faster walking speed and it is even possible to perform stretch knee walking. This study presents the mechanical design of a toe-feet bipedal, TPinokio and the implementation of some optimal walking gait generation methods. The optimality in the gait trajectory is achieved by applying augmented model predictive control method and the pole-zero cancellation method, taken into consideration of a trade-off between walking speed and stability. The mechanism of the TPinokio robot is designed in modular form, so that its kinematics can be modelled accurately into a multiple point-mass system, its dynamics is modelled using the single and double mass inverted pendulum model and zero-moment-point concept. The effectiveness of the design and control technique is validated by simulation testing with the robot walking on flat surface and climbing stairs.

Inspec keywords: poles and zeros; mechanical stability; robot dynamics; robot kinematics; legged locomotion; humanoid robots; predictive control; optimal control

Other keywords: walking speed; single mass inverted pendulum model; optimal walking gait generation methods; multiple point-mass system; toe-feet bipedal; pole-zero cancellation method; stability; gait trajectory; mechanical design; TPinokio robot; augmented model predictive control method; humanoid robot; optimal control; zero-moment-point concept; double mass inverted pendulum model

Subjects: Control system analysis and synthesis methods; Stability in control theory; Mobile robots; Robot and manipulator mechanics; Optimal control; Buckling and instability (mechanical engineering)

References

    1. 1)
    2. 2)
    3. 3)
      • 5. Kajita, S., Kahehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: ‘Biped walking pattern generation using preview control of the zero-moment-point’. IEEE Conf. Robotics and Automation, 2003, Vol. 2, pp. 16201626.
    4. 4)
      • 13. Wee, T.C., Astolfi, A., Xie, M.: ‘Robust control of bipedal humanoid (TPinokio), international symposium on robotics and intelligent sensors’, Elsevier, Procedia Engineering, 2012, Vol. 41, pp. 643649.
    5. 5)
      • 1. Vukobratovic, M.: ‘How to control artificial anthropomorphic systems’, IEEE Trans., 1973, SMC-3, (5), pp. 497507.
    6. 6)
      • 14. Wang, L.: ‘Model predictive control system design and implementation using MATLAB’ (Springer, London2009).
    7. 7)
      • 4. Weiber, P.B.: ‘Trajectory free linear model predictive control for stable walking in the presence of strong perturbations’, INRIA, Ver 1, June 2009.
    8. 8)
      • 7. Astolfi, A., Ortega, R., Venkatraman, A.: ‘Global observer design for mechanical systems with non-holonomic constraints’. American Control Conf. (ACC), 2010, pp. 202207.
    9. 9)
      • 10. Wee, T.C., Astolfi, A., Xie, M.: ‘Modular joint design of a TPINOKIO bipedal robot’. ICINCO, 2011, pp. 185190.
    10. 10)
      • 12. Dallali, H., Brown, M., Van, B.: ‘Using the torso to compensate for non-minimum phase behaviour in ZMP bipedal walking’ (Springer, Berlin2009), pp. 191202.
    11. 11)
      • 9. Chevallereau, C., Bessonnet, G., Abba, G., Aoustin, Y.: ‘Bipedal robots: modeling, design and walking synthesis’ (Wiley, USA2009).
    12. 12)
      • 8. Xie, M., Zhang, G.Q., Ying, H.: ‘Planning and control of biped walking along curved paths on unknown and uneven terrain’ (Springer-Verlag, Berlin2009), ICIRA 2009, pp. 10321043.
    13. 13)
      • 6. Grizzle, J.W., Chevallereau, C., Ames, A.D., Sinnet, R.W.: ‘3D bipedal robotic walking: models, feedback control, and open problems’. NOLCOS, Bologna, Italy, September 2010.
    14. 14)
      • 11. Napoleon, , Shigeki, N.N., Mitsuji, S.: ‘Balance control analysis of humanoid robot based on ZMP feedback control’. Int. Conf. Intelligent Robots and Systems, October 2002, pp. 24372442.
    15. 15)
    16. 16)
      • 15. Jesse, B.H., Dennis, S.B.: ‘Nonminimum-phase zeros: much to do about nothing, Part II, humanoid robots’. IEEE Control System Magazine, 2007, pp. 4557.
    17. 17)
      • 3. Li, Q., Takanishi, A., Kato, I.: ‘A biped walking robot having a ZMP measurement system using universal force-moment sensors’. IROS ‘91, Osaka, Japan, 1991, pp. 15681573.
    18. 18)
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2013.0256
Loading

Related content

content/journals/10.1049/joe.2013.0256
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading