access icon openaccess Wireless network-on-chip: a survey

To alleviate the complex communication problems arising in the network-on-chip (NoC) architectures as the number of on-chip components increases, several novel interconnect infrastructures have been recently proposed to replace the traditional on-chip interconnection systems that are reaching their limits in terms of performance, power and area constraints. Wireless NoC (WiNoC) is among the most promising scalable interconnection architectures for future generation NoCs. In this study, the authors first provide a general description of the WiNoC architecture. Then, they discuss the research problems under five categories: topology, routing, flow control, antenna and reliability. Open research issues for the realisation of the WiNoC are also discussed.

Inspec keywords: integrated circuit interconnections; network-on-chip

Other keywords: interconnection architectures; wireless network-on-chip; NoC; on-chip components; on-chip interconnection systems

Subjects: Semiconductor integrated circuit design, layout, modelling and testing; Metallisation and interconnection technology; Network-on-chip; Network-on-chip

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • 16. Kim, J., Balfour, J., Dally, W.J.: ‘Flattened butterfly topology for on-chip networks’. Proc. Int. Symp. Microarchitecture, December 2007, pp. 172182.
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • 19. Buchanan, M.: ‘Nexus: small worlds and the groundbreaking theory of networks’. Technical Report, WW Norton and Company, 2003.
    29. 29)
    30. 30)
      • 26. Wu, R., Wang, Y., Zhao, D.: ‘Low-cost deadlock-free design of minimal-table rerouted xy-routing for irregular wireless nocs’. Proc. ACM/IEEE Int. Symp. Networks-on-Chip (NOCS), May 2010, pp. 199206.
    31. 31)
      • 18. Watts, D.J.: ‘The dynamics of networks between order and randomness’ (Princeton University Press, Princeton, NJ, USA, 1999).
    32. 32)
      • 15. Benedetto, M.-G.D., Giancola, G.: ‘Understanding ultra wide band radio fundamentals’ (Prentice-Hall, 2004).
    33. 33)
      • 42. Ganguly, A., Pande, P., Belzer, B., Nojeh, A.: ‘A unified error control coding scheme to enhance the reliability of a hybrid wireless network-on-chip’. Proc. IEEE Defect and Fault Tolerance Symp. (DFT), October 2011, pp. 277285.
    34. 34)
    35. 35)
    36. 36)
      • 37. Bertozzi, D., Benini, L., DeMicheli, G.: ‘Low power error resilient encoding for on-chip databuses’. Proc. Conf. Design, Automation and Test in Europe, 2002, pp. 102109.
    37. 37)
    38. 38)
      • 3. Bell, S., Edwards, B., Amann, J., et al: ‘Tile64 processor: a 64-core soc with mesh interconnect’. Proc. IEEE Int. Solid-State Circuits Conf., February 2008, pp. 88598.
    39. 39)
      • 36. Ganguly, A., Wettin, P., Chang, K., Pande, P.: ‘Complex network inspired fault-tolerant noc architectures with wireless links’. Proc. ACM/IEEE Int. Symp. Networks-on-Chip (NOCS), May 2011, pp. 169176.
    40. 40)
      • 45. Matsutani, H., et al: ‘A case for wireless 3d nocs for cmps’. Proc. 18th Asia and South Pacific the Design Automation Conf. (ASP-DAC), January 2013, pp. 2328.
    41. 41)
    42. 42)
      • 39. Rahaman, M.S., Chowdhury, M.H.: ‘Improved bit error rate performance in intra-chip rf/wireless interconnect systems’. Proc. ACM/IEEE Great Lake Symp. VLSI, May 2008.
    43. 43)
      • 29. Bahn, J.H., Bagherzadeh, N.: ‘Efficient parallel buffer structure and its management scheme for a robust network-on-chip(noc) architecture’. Proc. 13th Int. CSI Computer Conf., 2008.
    44. 44)
      • 4. Bahn, J.H., Lee, S.E., Bagherzadeh, N.: ‘On design and analysis of a feasible network-on-chip (noc) architecture’. Proc. Fourth Int. Conf. Information Technology, April 2007, pp. 10331038.
    45. 45)
      • 2. Vangal, S., Howard, J., Ruhl, G., et al: ‘An 80-tile 1.28tflops network-on-chip in 65 nm cmos’. Proc. IEEE Int. Solid-State Circuits Conf., February 2007, pp. 98589.
    46. 46)
      • 40. Rahaman, M.S., Chowdhury, M.H.: ‘Bit-error-rate performance of inter-chip rf/wireless interconnect systems’. Proc. Int. Conf. Microelectronics, December 2008.
    47. 47)
    48. 48)
    49. 49)
      • 14. Zhao, D., Wang, Y., Li, J., Kikkawa, T.: ‘Design of multi-channel wireless noc to improve on-chip communication capacity’. Proc. Fifth IEEE/ACM Int. Symp. Networks on Chip (NoCS), May 2011, pp. 177184.
    50. 50)
    51. 51)
    52. 52)
    53. 53)
      • 24. Deb, S., Chang, K., Ganguly, A., Pande, P.: ‘Comparative performance evaluation of wireless and optical noc architectures’. Proc. 2010 IEEE Int. SOC Conf. (SOCC), September 2010, pp. 487492.
    54. 54)
    55. 55)
      • 43. Carloni, L.P., Pande, P., Xie, Y.: ‘Networks-on-chip in emerging interconnect paradigms: advantages and challenges’. Proc. Int. Symp. Networks-on-Chip (NOCS), May 2009, pp. 93102.
    56. 56)
    57. 57)
      • 8. Fukuda, M., Saha, P.K., Sasaki, N., Kikkawa, T.: ‘A 0.18 µm cmos impulse radio based uwb transmitter for global wireless interconnections of 3d stacked-chip system’. Proc. Int. Conf. Solid State Devices and Materials, September 2006, pp. 7273.
    58. 58)
    59. 59)
      • 11. Wang, C., Hu, W.H., Bagherzadeh, N.: ‘A wireless network-on-chip design for multicore platforms’. Proc. 19th Euromicro Int. Conf. Parallel, Distributed and Network-Based Processing (PDP), February 2011, pp. 409416.
    60. 60)
    61. 61)
      • 44. Ganguly, A.: ‘Towards a scalable and reliable wireless network-on-chip’, PhD dissertation, Washington State University, 2010.
    62. 62)
    63. 63)
    64. 64)
      • 23. Deb, S., Ganguly, A., Chang, K., et al: ‘Enhancing performance of network-on-chip architectures with millimeter-wave wireless interconnects’. Proc. 21st IEEE Int. Conf. Application-specific Systems Architectures and Processors (ASAP), July 2010, pp. 7380.
    65. 65)
      • 10. Lee, S.B., Tam, S.W., Pefkianakis, I., et al: ‘A scalable micro wireless interconnect structure for cmps’. Proc. 15th annual Int. Conf. Mobile Computing and Networking, September 2009, pp. 217228.
    66. 66)
      • 28. Dally, W.J.: ‘Virtual-channel flow control’. Proc. Int. Symp. Computer Architecture, 1990.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2013.0209
Loading

Related content

content/journals/10.1049/joe.2013.0209
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading