Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Detecting and characterising returns in a pulsed ladar system

Detecting and characterising returns in a pulsed ladar system

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Vision, Image and Signal Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A new multi-spectral laser radar (ladar) system based on the time-correlated single photon counting, time-of-flight technique has been designed to detect and characterise distributed targets at ranges of several kilometres. The system uses six separated laser channels in the visible and near infrared part of the electromagnetic spectrum. The authors present a method to detect the numbers, positions, heights and shape parameters of returns from this system, used for range profiling and target classification. The algorithm has two principal stages: non-parametric bump hunting based on an analysis of the smoothed derivatives of the photon count histogram in scale space, and maximum likelihood estimation using Poisson statistics. The approach is demonstrated on simulated and real data from a multi-spectral ladar system, showing that the return parameters can be estimated to a high degree of accuracy.

References

    1. 1)
      • M.R. Stoneking , D.J. Den Hartog . Maximum-likelihood fitting of data dominated by Poisson statistical uncertainties. Rev. Sci. Instrum. , 1 , 914 - 917
    2. 2)
    3. 3)
      • M. Umasuthan , A.M. Wallace , J.S. Massa , G.S. Buller , A.C. Walker . Processing time-correlated single photon data to acquire range images. IEE Proc., Vis. Image Signal Process. , 4 , 237 - 243
    4. 4)
    5. 5)
      • P. Chaudhuri , J.S. Marron . SiZer for exploration of structure in curves. J. Am. Stat. Assoc. , 447 , 807 - 823
    6. 6)
      • G.M. McLachlan , D. Peel . (2001) Finite mixture models.
    7. 7)
      • A.M. Wallace , G.S. Buller , A.C. Walker . 3D imaging and ranging by time-correlated single photon counting. Comput. Control Eng. J. , 4 , 157 - 168
    8. 8)
      • K. Johnson , M. Vaidyanathan , S. Xue , W. Tennant , L. Kozlowski , G. Hughes , D.D. Smith . Adaptive LaDAR receiver for multispectral imaging. Proc. SPIE , 98 - 105
    9. 9)
      • K.P. Burnham , D. Anderson . (2002) Model selection and multi-model inference.
    10. 10)
      • M.D. Hannam , W.J. Thompson . Estimating small signals by using maximum likelihood and Poisson statistics. Nucl. Instrum. Methods Phys. Res. A , 239 - 251
    11. 11)
      • E.P. Baltsavias . Airborne laser scanning: existing systems and firms and other resources. ISPRS J. Photogramm. Remote Sens. , 164 - 198
    12. 12)
      • J.B.S. Haldane . Simple tests for biomodality and bitangentiality. Ann. Eugen. , 359 - 364
    13. 13)
      • B.R. Foy , B.D. McVey , R.R. Petrin , J.J. Tiee , C. Wilson . Target characterisation in 3D using infrared LaDAR. Proc. SPIE , 181 - 187
    14. 14)
      • C.L. Lawson , R.J. Hanson . (1974) Solving least squares problems.
    15. 15)
      • M. Browder , B. Evans , J. Beck , M. Blessinger , W. Blattner , R. LeBlanc , B. Miles . Three dimensional imaging sensors program. Proc. SPIE , 73 - 83
    16. 16)
      • A.I. Rasiah , R. Togneri , Y. Attikiouzel . Modelling 1D signals using Hermite basis functions. IEE Proc., Vis. Image Signal Process. , 6 , 345 - 354
    17. 17)
      • J.G. Skellam . The frequency distribution of the difference between two Poisson variates belonging to different populations. J. R. Stat. Soc. Ser. A
    18. 18)
    19. 19)
      • S. Pellegrini , G.S. Buller , J.M. Smith , A.M. Wallace , S. Cova . Laser based distance measurement using picosecond resolution time-correlated single photon counting. Meas. Sci. Technol. , 712 - 716
    20. 20)
      • N.I. Fisher , J.S. Marron . Mode testing via the excess mass estimate. Biometrika , 2 , 499 - 517
    21. 21)
      • T. Hauschild , M. Jentschel . Comparison of maximum likelihood estimation and chi-square statistics applied to counting experiments. Nucl. Instrum. Methods Phys. Res. A , 384 - 401
    22. 22)
      • B.W. Silverman . Using kernel density estimates to investigate multimodality. J. R. Stat. Soc. , 97 - 99
    23. 23)
      • P. Churoux , C. Besson , J.P. Bouzinac . Model of a burst imaging LaDAR through the atmosphere. Proc. SPIE , 324 - 331
    24. 24)
      • J. Harezlak . (1998) Bump hunting in regression data revisited.
    25. 25)
      • J.S. Massa , G.S. Buller , A.C. Walker , G.R. Smith , S. Cova , M. Umasuthan , A.M. Wallace . Optical design and evaluation of a three-dimensional imaging and ranging system based on time-correlated single photon counting. Appl. Opt. , 6 , 1063 - 1070
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-vis_20045023
Loading

Related content

content/journals/10.1049/ip-vis_20045023
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address