http://iet.metastore.ingenta.com
1887

Control analysis of the importance of phosphoglycerate enolase for metabolic fluxes in Lactococcus lactis subsp. lactis IL1403

Control analysis of the importance of phosphoglycerate enolase for metabolic fluxes in Lactococcus lactis subsp. lactis IL1403

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The glycolytic enzyme phosphoglycerate enolase (PGE) catalyses the step from 2-phosphoglycerate to phosphoenolpyruvate in glycolysis. A control analysis of PGE on growth, glycolytic flux and product formation in Lactococcus lactis subsp. lactis IL1403 is presented. A library of strains with a modulated expression of PGE from 36 to 232% relative to wildtype level was constructed. Selected strains were studied with respect to growth, glycolytic flux and product formation in a chemically defined medium. On the basis of these data, flux control coefficients of PGE on the respective fluxes were calculated. At wildtype level, PGE was found to have no significant flux control on growth, glycolytic flux or product formation, but at 36% of PGE activity relative to wildtype, the flux control on the growth rate was estimated to be CPGEJµ≃0.7, on the glycolytic flux CPGEJg≃0.8, on lactate formation CPGEJlactate≃1.3, on formate formation CPGEJformate≃0.5 and on acetate formation CPGEJacetate≃0.25. These flux control coefficients show that the metabolism of L. lactis subsp. lactis IL1403 becomes slightly more mixed acid at reduced PGE activities. Estimation of the relative turnover of PGE indicates that excess capacity of PGE in L. lactis IL1403 may be as low as twofold.

References

    1. 1)
      • R. Heinrich , T.A. Rapoport . A linear steady-state treatment of enzymatic chains: general properties, control, and effector strength. Eur. J. Biochem. , 89 - 95
    2. 2)
      • H. Kacser , J.A. Burns . Rate control of biological processes. Cambridge Symp. Soc. Exp. Biol. , 65 - 104
    3. 3)
      • C. Solem , B.J. Koebmann , P.R. Jensen . Glyceraldehyde-3-phosphate dehydrogenase has no control over glycolytic flux in Lactococcus lactis MG1363. J. Bacteriol. , 1564 - 1571
    4. 4)
      • H.W. Andersen , M.B. Pedersen , K. Hammer , P.R. Jensen . Lactate dehydrogenase has no control on lactate production but has a strong negative control on formate production in Lactococcus lactis. Eur. J. Biochem. , 6379 - 6389
    5. 5)
      • B. Koebmann , C. Solem , P.R. Jensen . Control analysis as a tool to understand the formation of the las operon in Lactococcus lactis. FEBS J. , 2292 - 2303
    6. 6)
      • B.J. Koebmann , C. Solem , M.B. Pedersen , D. Nilsson , P.R. Jensen . Expression of genes encoding F1-ATPase results in uncoupling of glycolysis from biomass production in Lactococcus lactis. Appl. Environ. Microbiol. , 4274 - 4282
    7. 7)
      • A. Chopin , M.C. Chopin , A. Moillo-Batt , P. Langella . Two plasmid-determined restriction and modification systems in Streptococcus lactis. Plasmid , 260 - 263
    8. 8)
      • P. Le Bourgeois , M. Lautier , M. Mata , P. Ritzenthaler . New tools for the physical and genetic mapping of Lactococcus strains. Gene , 109 - 114
    9. 9)
      • J. Sambrook , E.F. Fritsch , T. Maniatis . (1989) Molecular cloning: a laboratory manual.
    10. 10)
      • B.E. Terzaghi , W.E. Sandine . Improved medium for lactic streptococci and their bacteriophages. Appl. Microbiol. , 807 - 813
    11. 11)
      • P.R. Jensen , K. Hammer . Minimal requirements for exponential growth of Lactococcus lactis. Appl. Environ. Microbiol. , 4363 - 4366
    12. 12)
      • C. Solem , P.R. Jensen . Modulation of gene expression made easy. Appl. Environ. Microbiol. , 2397 - 2403
    13. 13)
      • S. Even , N.D. Lindley , M. Cocaign-Bousquet . Molecular physiology of sugar metabolism in Lactococcus lactis IL1403. J. Bacteriol. , 3817 - 3824
    14. 14)
      • S. Benthin . Growth energetics of Lactococcus cremoris FD1 during energy-, carbon-, and nitrogen-limitation in steady state and transient cultures. Chem. Eng. , 589 - 609
    15. 15)
      • A.M. Fordyce , V.L. Crow , T.D. Thomas . Regulation of product formation during glucose or lactose limitation in nongrowing cells of Streptococcus lactis. Appl. Environ. Microbiol. , 332 - 337
    16. 16)
      • T.D. Thomas , D.C. Ellwood , V.M. Longyear . Change from homo- to heterolactic fermentation by Streptococcus lactis resulting from glucose limitation in anaerobic chemostat cultures. J. Bacteriol. , 465 - 476
    17. 17)
      • J. Thompson . In vivo regulation of glycolysis and characterization of sugar:phosphotransferase systems in Streptococcus lactis. J. Bacteriol. , 465 - 476
    18. 18)
      • J. Thompson , J. Reizerm , A. Peterkofsky . (1987) Sugar transport in lactic acid bacteria, Sugar transport and metabolism in gram-positive bacteria.
    19. 19)
      • V.L. Crow , G.G. Pritchard . Fructose 1,6-diphosphate-activated l-lactate dehydrogenase from Streptococcus lactis: kinetic properties and factors affecting activation.. J. Bacteriol. , 82 - 91
    20. 20)
      • C. Garrigues , P. Loubiere , N.D. Lindley , M. Cocaign-Bousquet . Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J. Bacteriol. , 5282 - 5287
    21. 21)
      • S. Takahashi , K. Abbe , T. Yamada . Purification of pyruvate formate-lyase from Streptococcus mutans and its regulatory properties. J. Bacteriol. , 1034 - 1040
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-syb_20060022
Loading

Related content

content/journals/10.1049/ip-syb_20060022
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address