Print ISSN 1741-2471"/>
http://iet.metastore.ingenta.com
1887

Evolutionary changes of metabolic networks and their biosynthetic capacities

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article PDF
$19.95
Buy Knowledge Pack
10 articles for $120.00

Abstract

The metabolic networks of different species show a large variety in their structural design. In this work, the evolution of functional properties of metabolism in relation with metabolic network structure is investigated. The metabolism of ancestral species is inferred from the metabolism of contemporary species using a Bayesian network model for metabolism evolution. Subsequently, these networks are analysed with the recently developed method of network expansion. This method allows for a structural analysis of metabolic networks as well as a quantification of network functions in terms of their synthesising capacities when they are provided with certain external resources. The evolutionary dynamics of one particular network function: the metabolic expansion of glucose is investigated.

References

    1. 1)
      • R. Heinrich , S. Schuster . (1996) The regulation of cellular systems.
    2. 2)
      • A. Stephani , J.C. Nuño , R. Heinrich . Optimal stoichiometric design of ATP-producing systems as determined by an evolutionary algorithm. J. Theor. Biol. , 45 - 61
    3. 3)
      • O. Ebenhöh , R. Heinrich . Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems. Bull. Math. Biol. , 21 - 55
    4. 4)
      • O. Ebenhöh , R. Heinrich . Stoichiometric design of metabolic networks: multifunctionality, clusters, optimization, weak and strong robustness. Bull. Math. Biol. , 323 - 357
    5. 5)
      • T.D. Vo , H.J. Greenberg , B.O. Palsson . Reconstruction and functional characterization of the human mitochondrial metabolic network based on proteomic and biochemical data. J. Biol. Chem. , 38 , 39532 - 39540
    6. 6)
      • V. Hatzimanitakis , C. Li , J.A. Ionita , C.S. Henry , M.D. Jankowski , L.J. Broadbelt . Exploring the diversity of complex metabolic networks. Bioinformatics , 8 , 1603 - 1609
    7. 7)
      • M. Kanehisa . A database for post-genome analysis. Trends Genet. , 375 - 376
    8. 8)
      • M. Kanehisa , S. Goto , M. Hattori , K.F. Aoki-Kinoshita , M. Itoh , S. Kawashima , T. Katayama , M. Araki , M. Hirakawa . From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. , D354 - D357
    9. 9)
      • I. Schomburg , A. Chang , D. Schomburg . BRENDA, enzyme data and metabolic information. Nucleic Acids Res. , 1 , 47 - 49
    10. 10)
      • K.J. Kauffman , P. Prakash , J.S. Edwards . Advances in flux balance analysis. Curr. Opin. Biotechnol. , 491 - 496
    11. 11)
      • S. Schuster , D.A. Fell , T. Dandekar . A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nature Biotechnol. , 326 - 332
    12. 12)
      • J.A. Papin , N.D. Price , S.J. Wiback , D.A. Fell , B.O. Palsson . Metabolic pathways in the post-genome era. TIBS , 5 , 250 - 258
    13. 13)
      • H. Jeong , B. Tombor , R. Albert , Z.N. Oltvai , A.L. Barabasi . The large-scale organization of metabolic networks. Nature , 651 - 654
    14. 14)
      • A. Wagner , D.A. Fell . The small world inside large metabolic networks. Proc. R. Soc. Lond. B , 1803 - 1810
    15. 15)
      • O. Ebenhöh , T. Handorf , R. Heinrich . Structural analysis of expanding metabolic networks. Genome Inform. , 1 , 35 - 45
    16. 16)
      • T. Handorf , O. Ebenhöh , R. Heinrich . Expanding metabolic networks: scopes of compounds, robustness and evolution. J. Mol. Evol. , 498 - 512
    17. 17)
      • O. Ebenhöh , T. Handorf , R. Heinrich . A cross species comparison of metabolic network functions. Genome Inform. , 1 , 203 - 213
    18. 18)
      • D.L. Wheeler , D.M. Church , R. Edgar , S. Federhen , W. Helmberg , T.L. Madden . Database resources of the National Center for Biotechnology Information: update. Nucleic Acids Res. , D35 - D40
    19. 19)
      • Bru, C.: `Analyse évolutive des familles de domaines protéiques’, Dissertation', 2005, , Université Paul Sabatier, Toulouse, France, Dissertation, Thesis.
    20. 20)
      • K.P. Murphy . The Bayes net toolbox for Matlab. Comput. Sci. Stat. , 331 - 350
    21. 21)
      • A.P. Dempster , N.M. Laid , D.B. Rubin . Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B , 1 - 38

Related content

content/journals/10.1049/ip-syb_20060014
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address