Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Methods of robustness analysis for Boolean models of gene control networks

Methods of robustness analysis for Boolean models of gene control networks

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

As a discrete approach to genetic regulatory networks, Boolean models provide an essential qualitative description of the structure of interactions among genes and proteins. Boolean models generally assume only two possible states (expressed or not expressed) for each gene or protein in the network, as well as a high level of synchronisation among the various regulatory processes. Two possible methods of adapting qualitative models to incorporate the continuous-time character of regulatory networks, are discussed and compared. The first method consists of introducing asynchronous updates in the Boolean model. In the second method, the approach introduced by Glass is adopted to obtain a set of piecewise linear differential equations that continuously describe the states of each gene or protein in the network. Both methods are applied to a Boolean model of the segment polarity gene network of Drosophila melanogaster. The dynamics of the model is analysed, and a theoretical characterisation of the model's gene pattern prediction is provided as a function of the timescales of the various processes.

References

    1. 1)
      • J.D. Han , N. Bertin , T. Hao , D.S. Goldberg , G.F. Berriz . Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature , 88 - 93
    2. 2)
      • A. Gallet , C. Angelats , S. Kerridge , P.P. Thérond . Cubitus interruptus-independent transduction of the hedgehog signal in Drosophila. Development , 5509 - 5522
    3. 3)
      • J.E. Hooper , M.P. Scott , W. Hennig . (1992) The molecular genetic basis of positional information in insect segments, Early embryonic development of animals.
    4. 4)
      • L. Giot , J.S. Bader , C. Brouwer , A. Chaudhuri , B. Kuang . A protein interaction map of Drosophila melanogaster. Science , 1727 - 1736
    5. 5)
      • T. Gedeon . Attractors in continuous-time switching networks. Commun. Pure Appl. Anal. , 187 - 209
    6. 6)
      • G. von Dassov , E. Meir , E.M. Munro , M.O. Odell . The segment polarity network is a robust developmental module. Nature , 188 - 192
    7. 7)
      • T.I. Lee , N.J. Rinaldi , F. Robert . Transcriptional regulatory networks in Saccharomyces cerevisiae. Science , 799 - 804
    8. 8)
      • R. Albert , H.G. Othmer . The topology of the regulatory interactions predicts the expression pattern of the Drosophila segment polarity genes. J. Theor. Biol. , 1 - 18
    9. 9)
      • K.M. Cadigan , U. Grossniklaus , W.J. Gehring . Localized expression of sloppy paired protein maintains the polarity of Drosophila parasegments. Genes Dev. , 899 - 913
    10. 10)
      • N.M. Luscombe , M.M. Babu , H. Yu . Genomic analysis of regulatory network dynamics reveals large topological changes. Nature , 308 - 312
    11. 11)
      • L. Glass , S.A. Kauffman . The logical analysis of continuous, nonlinear biochemical control networks. J. Theor. Biol. , 103 - 129
    12. 12)
      • L. Mendoza , D. Thieffry , E.R. Alvarez-Buylla . Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis. Bioinformatics , 593 - 606
    13. 13)
      • R. Albert . Scale-free networks in cell biology. J. Cell Sci. , 4947 - 4957
    14. 14)
      • M. Chaves , R. Albert , E.D. Sontag . Robustness and fragility of Boolean models for genetic regulatory networks. J. Theor. Biol. , 431 - 449
    15. 15)
      • D.P. Bertsekas , J.N. Tsitsiklis . (1989) Parallel and distributed computation, numerical method.
    16. 16)
      • L. Sánchez , D. Thieffry . A logical analysis of the Drosophila gap-gene system. J. Theor. Biol. , 115 - 141
    17. 17)
      • C. Alexandre , J.P. Vincent . Requirements for transcriptional repression and activation by engrailed in Drosophila embryos. Development , 729 - 739
    18. 18)
    19. 19)
      • S. Li , C.M. Armstrong , N. Bertin , H. Ge , S. Milstein . A map of the interactome network of the metazoan C. elegans. Science , 540 - 543
    20. 20)
      • H. de Jong , J.L. Gouzé , C. Hernandez , M. Page , T. Sari , J. Geiselmann . Qualitative simulation of genetic regulatory networks using piecewise linear models. Bull. Math. Biol. , 301 - 340
    21. 21)
      • T. Tabata , S. Eaton , T.B. Kornberg . The Drosophila hedgehog gene is expressed specifically in posterior compartment cells and is a target of engrailed regulation. Genes Dev. , 2635 - 2645
    22. 22)
      • N.T. Ingolia . Topology and robustness in the Drosophila segment polarity network. PLoS Biol. , 805 - 815
    23. 23)
      • L. Glass . Classification of biological networks by their qualitative dynamics. J. Theor. Biol. , 85 - 107
    24. 24)
      • A. Mochizuki . An analytical study of the number of steady states in gene regulatory networks. J. Theor. Biol. , 291 - 310
    25. 25)
      • D. Swantek , J.P. Gergen . Ftz modulates runt-dependent activation and repression of segment-polarity gene transcription. Development , 2281 - 2290
    26. 26)
      • C. Espinosa-Soto , P. Padilla-Longoria , E.R. Alvarez-Buylla . A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. Plant Cell , 2923 - 2939
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-syb_20050079
Loading

Related content

content/journals/10.1049/ip-syb_20050079
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address