Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Elimination of the initial value parameters when identifying a system close to a Hopf bifurcation

Elimination of the initial value parameters when identifying a system close to a Hopf bifurcation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

One of the biggest problems when performing system identification of biological systems is that it is seldom possible to measure more than a small fraction of the total number of variables. If that is the case, the initial state, from where the simulation should start, has to be estimated along with the kinetic parameters appearing in the rate expressions. This is often done by introducing extra parameters, describing the initial state, and one way to eliminate them is by starting in a steady state. We report a generalisation of this approach to all systems starting on the centre manifold, close to a Hopf bifurcation. There exist biochemical systems where such data have already been collected, for example, of glycolysis in yeast. The initial value parameters are solved for in an optimisation sub-problem, for each step in the estimation of the other parameters. For systems starting in stationary oscillations, the sub-problem is solved in a straight-forward manner, without integration of the differential equations, and without the problem of local minima. This is possible because of a combination of a centre manifold and normal form reduction, which reveals the special structure of the Hopf bifurcation. The advantage of the method is demonstrated on the Brusselator.

References

    1. 1)
      • S. Wiggins . (1990) Introduction to applied nonlinear dynamical systems and chaos, Texts in applied mathematics.
    2. 2)
      • W. Kolch , M. Calder , D. Gilbert . When kinases meet mathematics: the systems biology of MAPK signalling. FEBS Lett. , 1891 - 1895
    3. 3)
      • D. Gonzea , J.-C. Leloupa , A. Goldbeter . Theoretical models for circadian rhythms in Neurospora and Drosophila. C. R. Acad. Sci., Ser. III Sci. de la Vie , 1 , 57 - 67
    4. 4)
    5. 5)
      • A. Goldbeter . (1996) Biochemical oscillations and cellular rhythms.
    6. 6)
      • L. Ljung . (1999) System identification theory for the user.
    7. 7)
    8. 8)
      • S. Danø , P.G. Sorensen , F. Hynne . Sustained oscillations in living cells. Nature , 6759 , 320 - 322
    9. 9)
      • J.M.T. Thompson , H.B. Stewart . (1986) Nonlinear dynamics and chaos.
    10. 10)
    11. 11)
      • M. Anguelova . (2004) Nonlinear observability and identifiability: general theory and a case study of a kinetic models for .
    12. 12)
      • J. Nocedal , S.J. Wright . (1999) Numerical optimization.
    13. 13)
      • L.F. Olsen , K. Ursula , A.L. Kindzelskii , H.R. Petty . A model of the oscillatory metabolism of activated neutrophils. Biophys. J. , 69 - 81
    14. 14)
      • J.J. Tyson , B. Novak , G.M. Odell , K. Chena , C.D. Thron . Chemical kinetic theory: understanding cell-cycle regulation. Trends in Biochem. Sci. , 3 , 89 - 96
    15. 15)
      • Cedersund, G., Danø, S., Sørensen, P.G., Jirstrand, M.: `From ', Proc. BioMedSim2005, 26–27 May 2005, Linköping, Sweden, p. 105–114.
    16. 16)
      • P. Richard , B. Teusink , M.B. Hemker , K. van Dam , H.V. Westerhoff . Sustained oscillations in free-energy state and hexose phosphates in yeast. Yeast , 731 - 740
    17. 17)
      • G. Cedersund . (2004) System identification of nonlinear thermochemical systems with dynamical instabilities.
    18. 18)
    19. 19)
      • F. Hynne , S. Danø , P.G. Sørensen . Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophys. Chem. , 121 - 163
    20. 20)
    21. 21)
      • S. Sasagawa , Y. Ozaki , K. Fujita , S. Kuroda . Prediction and validation of the distinct dynamics of transient and sustained ERK activation. Nat. Cell Biol. , 365 - 373
    22. 22)
      • Gennemark, P.: `Modeling and identification of biological systems with emphasis on osmoregulation in yeast', 2005, PhD, Chalmers Technical University, Sweden.
    23. 23)
      • A. Betz , B. Chance . Phase relationship of glycolytic intermediates in yeast cells with oscillatory metabolic control. Arch. Biochem. Biophys. , 585 - 594
    24. 24)
      • B. Teusink , J. Passarge , C.A. Reijenga , E. Esgalhado , C.C. van der Weijden , M. Schepper , M.C. Walsch , B. Bakker , K. van Dam , H. Westerhof , J.L. Snoep . Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur. J. Biochem. , 17 , 5313 - 5329
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-syb_20050068
Loading

Related content

content/journals/10.1049/ip-syb_20050068
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address