Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Systems biology and the mathematical modelling of antibody-directed enzyme prodrug therapy (ADEPT)

Systems biology and the mathematical modelling of antibody-directed enzyme prodrug therapy (ADEPT)

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Antibody-directed enzyme prodrug therapy (ADEPT) can generate highly localised concentrations of cytotoxic agents directly in a tumour, thereby reducing the collateral toxicity associated with normal tissue exposure. ADEPT is a two-component approach. First, a non-toxic antibody–enzyme fusion protein is localised in the tumour matrix by binding a specific antigen expressed only on the surface of a cancer cell. Once the fusion protein is bound, an inert small molecule prodrug is administered which is the substrate for the enzyme bound to the tumour surface. When the prodrug comes into contact with the bound enzyme, an active cytotoxic agent is generated. A multiple length-scale model of ADEPT therapy in solid tumours is presented. A four-compartment pharmacokinetic (PK) model is formulated where the tumour is comprised of interstitial and cell-surface subcompartments. The macroscopic PK model which describes the biodistribution of antibody–enzyme conjugate, prodrug and active drug at the largest length scale is coupled to a reaction–diffusion tumour model. The models are qualitatively validated against current literature and experimental understanding. The relationship between tumour localisation and the affinity of the antibody–enzyme conjugate for its surface antigen is explored by simulation. The influence of pharmacokinetic and biophysical parameters such as renal elimination rate and permeability of the tumour vasculature upon tumour uptake and retention of the fusion protein are also explored. Lastly, a technique for establishing an optimal prodrug dosing schedule is formulated and initial simulation results are presented.

References

    1. 1)
      • G. Bergers , L.E. Benjamin . Tumorigenesis and the angiogenic switch. Nature Rev. Cancer , 401 - 410
    2. 2)
      • L.T. Baxter , R.K. Jain . Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc. Res. , 77 - 104
    3. 3)
      • H.F. Dvorak , N.S. Orenstein , A.C. Carvalho , W.H. Churchill , A.M. Dvorak , S.F. Galli , J. Feder , A.M. Bitzer , J. Rypysc , P. Giovinco . Induction of a fibrin-gel investment – an early event in line 10 hepatocarcinoma growth mediated by tumor-secreted products. J. Immunol. , 166 - 174
    4. 4)
      • L.T. Baxter , R.K. Jain . Pharmacokinetic analysis of the macroscopic distribution of enzyme conjugated antibodies and prodrugs – comparison with experimental data. Br. J. Cancer , 447 - 456
    5. 5)
      • L.T. Baxter , R.K. Jain . Mechanisms of heterogenous distribution of monoclonal antibodies and other macromolecules in tumors – significance of elevated interstitial pressure. Cancer Res. , 7022 - 7032
    6. 6)
      • D. Kerr , G. Schreeiber , B. Vrudhula , H. Svensson , K. Hellstrom , P. Senter . Regressions and cures of melanoma xenografts following treatment with monoclonal antibody β-lactamase conjugates in combination with anti-cancer prodrugs. Cancer Res. , 3558 - 3563
    7. 7)
      • R.P. Francis , S.K. Sharma , C.J. Springer . A phase I trial of antibody directed enzyme prodrug therapy (ADEPT) in patients with advanced colorectal carcinoma or other CEA producing tumors. Br. J. Cancer , 600 - 607
    8. 8)
      • J.N. Wienstein , W. van Osdol . Early intervention in cancer using monoclonal antibodies and other biological ligands. Cancer Res. , 2747 - 2751
    9. 9)
      • B.M. Brenner , T.H. Hostetter , H.D. Humes . Glomerular permselectivity – barrier function based on discrimination of molecular size and charge. Am. J. Physiol. , 455 - 460
    10. 10)
      • K.D. Bagshawe , C.J. Springer , F. Searle . A cytotoxic agent can be generated selectively at cancer sites. Br. J. Cancer , 700 - 703
    11. 11)
      • P. Netti , L. Hamberg , J. Babich , D. Kierstead , W. Graham , G. Hunter , G. Wolf , A. Fischman , Y. Boucher , R.K. Jain . Enhancement of fluid filtration across tumor vessels – implication for delivery of macromolecules. PNAS , 3137 - 3142
    12. 12)
      • M. Fussenegger , J.E. Bailey , J. Varner . A mathematical model of caspase function in apoptosis. Nature Biotech. , 768 - 774
    13. 13)
      • P. Carmeliet , R. Jain . Angiogensis in cancer and other diseases. Nature , 249 - 257
    14. 14)
      • A. Mayar , R. Francis , S.K. Sharma . A phase I/II trial of antibody directed enzyme prodrug therapy (ADEPT) with MFECP1 and ZD2767P. Br. J. Cancer
    15. 15)
      • A. Krogh . The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J. Physiol. , 409 - 415
    16. 16)
      • R.F. Sherwood , R.G. Melton , S.M. Alwan , P. Hughes . Purification and properties of a carboxypeptidase G2 from Pseudomonas sp. strain RS-16: use of a novel triazine dye affinity method. Eur. J. Biochem. , 447 - 453
    17. 17)
      • D.E. Mager , W.J. Jusko . General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J. Pharmokinet. Pharmacodyn. , 507 - 532
    18. 18)
      • K.D. Bagshawe , S.K. Sharma , C.J. Springer . Antibody directed enzyme prodrug therapy (ADPET) – clinical report. Dis. Markers , 233 - 238
    19. 19)
      • K. Fujimori , D.G. Covell , J.E. Fletcher , J.N. Wienstein . Modeling analysis of the global and microscopic distribution of immunoglobulin G, F(ab′)2 and Fab in tumors. Cancer Res. , 5656 - 5663
    20. 20)
      • C. Sung , R.J. Youle , R.L. Dedrick . Pharmacokinetic analysis of immunotoxin uptake in solid tumors – role of plasma kinetics, capillary permeability and binding. Cancer Res. , 7382 - 7392
    21. 21)
      • W. van Osdol , K. Fujimori , J.N. Wienstein . An analysis of monoclonal antibody distribution in microscopic tumor nodules – consequences of a binding site barrier. Cancer Res. , 4776 - 4784
    22. 22)
      • L.T. Baxter , R.K. Jain . Transport of fluid and macromolecules in tumors. III. Role of binding and metabolism. Microvasc. Res. , 5 - 23
    23. 23)
      • N.V. Mantzaris , S. Webb , H.G. Othmer . Mathematical modeling of tumor-induced angiogenesis. J. Math. Biol. , 111 - 187
    24. 24)
      • N. Siemers , N. Kerr , S. Yarnold , M. Stebbins , B. Vrudhula , I. Hellstrom , K. Hellstrom , P. Senter . L49-sfv-β-lactamase, a single chain anti-p97 antibody fusion protein. Bioconjugate Chem. , 510 - 519
    25. 25)
      • R.K. Jain . Transport of molecules across tumor vasculature. Cancer Metastasis Rev. , 559 - 593
    26. 26)
      • R.B. Bird , W.E. Stewart , E.N. Lightfoot . (2003) Transport phenomena.
    27. 27)
      • K. Gadkar , J. Varner , F.J. Doyle . Model identification of signal transduction networks from data using a state regulator problem. IEE Syst. Biol. , 17 - 30
    28. 28)
      • F. Yuan , Y. Chen , M. Dellian , N. Safabakhsh , N. Ferrara , R. Jain . Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc. Natl. Acad. Sci. USA , 14765 - 14770
    29. 29)
      • T.L. Jackson , S. Lubkin , J.D. Murray . Theoretical analysis of conjugate localization in two-step cancer chemotherapy. J. Math. Biol. , 353 - 376
    30. 30)
      • R. Jain . Delivery of molecular medicine to solid tumors. Science , 1079 - 1080
    31. 31)
      • Y. Yabe , M. Nishikawa , A. Tamada , Y. Takakura , M. Hashida . Targeted delivery and improved therapeutic potential of catalase by chemical modification – combination with superoxide dismutase derivatives. J. Pharm. Exp. Ther. , 1176 - 1184
    32. 32)
      • S.K. Hobbs , W.L. Monsky , F. Yuan , G.W. Roberts , L. Griffith , V. Torchillin , R. Jain . Regulation of transport pathways in tumor vessels – role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA , 4607 - 4612
    33. 33)
      • K.D. Bagshawe . Antibody directed enzymes revive anticancer prodrugs concept. Br. J. Cancer , 531 - 532
    34. 34)
      • M.P. Napier , S.K. Sharma , C.J. Springer . Antibody-directed enzyme prodrug therapy – efficacy and mechanism of action in colorectal carcinoma. Clin. Cancer Res. , 765 - 772
    35. 35)
      • M. Simeoni , P. Magni , C. Cammoa , G. De Nicolao , V. Croci , E. Pesenti , M. Germani , I. Poggesi , M. Rocchetti . Predictive pharmacokinetic–pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents. Cancer Res. , 1094 - 1101
    36. 36)
      • R. Aris . (1975) The mathematical theory of diffusion and reaction in permeable catalysts.
    37. 37)
      • F. Yuan , M. Dellian , D. Fukumura , M. Leunig , D. Berk , V. Torchillin , R. Jain . Vascular permeability in a human tumor xenograft – molecule size dependence and cutoff size. Cancer Res. , 3753 - 3756
    38. 38)
      • L.T. Baxter , R.K. Jain . Transport of fluid and macromolecules in tumors. IV. A microscopic model of the perivascular distribution. Microvasc. Res. , 252 - 272
    39. 39)
      • R.K. Jain . Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science , 58 - 62
    40. 40)
      • D. Ramkrishna . (2000) , Population balances: theory and applications to particulate systems engineering.
    41. 41)
      • K.D. Bagshawe , R.H.J. Begent . First clinical experience with ADEPT. Adv. Drug. Deliv. Rev. , 365 - 367
    42. 42)
      • K.D. Bagshawe , S.K. Sharma , C.J. Springer , P. Antoniw . Antibody directed enzyme prodrug therapy – a pilot scale clinical trial. Tumor Targeting , 17 - 29
    43. 43)
      • F. Yuan , M. Dellian , D. Fukumura , M. Leunig , D.A. Berk , V.P. Torchilin , R.K. Jain . Vascular permeability in a human tumour xenograft: molecular size dependence and cutoff size. Cancer Res. , 3752 - 3756
    44. 44)
      • S.K. Sharma , R.B. Pedley , J. Bhatia , G.M. Boxer , E. El-Emir , U. Qureshi , B. Tolner , H. Lowe , N.P. Michael , N. Minton , R. Begent , K.A. Chester . Sustained tumor regression of human colorectal cancer xenografts using a multifunctional mannosylated fusion protein in antibody-directed enzyme prodrug therapy. Clin. Cancer Res. , 814 - 825
    45. 45)
      • C.P. Graff , D.K. Wittrup . Theoretical analysis of antibody targeting of tumor spheroids – importance of dosage for penetration, and affinity for retention. Cancer Res. , 1288 - 1296
    46. 46)
      • G.P. Adams , R. Schier , K. Marshall , E.J. Wolf , A.D. McCall , J.D. Marks , L.M. Weiner . Increased affinity leads to improved selective tumor delivery of single-chain Fv antibodies. Cancer Res. , 485 - 490
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-syb_20050047
Loading

Related content

content/journals/10.1049/ip-syb_20050047
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address