Differential coding of humoral stimuli by timing and amplitude of intracellular calcium spike trains

Access Full Text

Differential coding of humoral stimuli by timing and amplitude of intracellular calcium spike trains

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The ubiquitous Ca2+-phosphoinositide pathway transduces extracellular signals to cellular effectors. Using a mathematical model, we simulated intracellular Ca2+ fluctuations in hepatocytes upon humoral stimulation. We estimated the information encoded about random humoral stimuli in these Ca2+–spike trains using an information-theoretic approach based on stimulus estimation methods. We demonstrate accurate transfer of information about random humoral signals with low temporal cutoff frequencies. In contrast, our results suggest that high-frequency stimuli are poorly transduced by the transmembrane machinery. We found that humoral signals are encoded in both the timing and amplitude of intracellular Ca2+ spikes. The information transmitted per spike is similar to that of sensory neuronal systems, in spite of several orders of magnitude difference in firing rate.

Inspec keywords: physiological models; neurophysiology; cellular biophysics; bioelectric phenomena; biomembranes; information theory; calcium

Other keywords: Ca; information theory; hepatocytes; sensory neuronal systems; firing rate; ubiquitous Ca2+-phosphoinositide pathway; intracellular calcium spike trains; differential humoral stimuli coding; mathematical model; extracellular signals; cellular effectors; stimulus estimation

Subjects: Bioelectricity; Biological transport; cellular and subcellular transmembrane physics; Electrical activity in neurophysiological processes; General, theoretical, and mathematical biophysics; Natural and artificial biomembranes

References

    1. 1)
      • R.E. Dolmetsch , K. Xu , R.S. Lewis . Calcium oscillations increase the efficiency and specificity of gene expression. Nature , 933 - 936
    2. 2)
      • F. Tang , E.W. Dent , K. Kalil . Spontaneous calcium transients in developing cortical neurons regulate axon outgrowth. J. Neurosci. , 927 - 936
    3. 3)
      • M.J. Berridge , M.D. Bootman , H.L. Roderick . Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. , 517 - 529
    4. 4)
      • N.M. Woods , K.S. Cuthbertson , P.H. Cobbold . Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes. Nature , 600 - 602
    5. 5)
      • P.E. Rapp , M.J. Berridge . The control of transepithelial potential oscillations in the salivary gland of Calliphora erythrocephala. J. Exp. Biol. , 119 - 132
    6. 6)
      • C. Schöfl , G. Brabant , R.D. Hesch , A. von zur Muhlen , P.H. Cobbold , K.S. Cuthbertson . Temporal patterns of alpha 1-receptor stimulation regulate amplitude and frequency of calcium transients. Am. J. Physiol. , 1030 - 1036
    7. 7)
      • M.J. Berridge . The AM and FM of calcium signalling. Nature , 759 - 760
    8. 8)
      • F. Gabbiani , C. Koch , C. Koch , I. Segev . (1998) Principles of spike train analysis, Methods in neuronal modeling.
    9. 9)
      • T.R. Chay , Y.S. Lee , Y.S. Fan . Appearance of phase-locked Wenckebach-like rhythms, devil's staircase and universality in intracellular calcium spikes in non-excitable cell models. J. Theor. Biol. , 21 - 44
    10. 10)
      • G. Brabant , K. Prank , C. Schöfl . Pulsatile patterns in hormone secretion. Trends Endocrinol. Metab. , 183 - 190
    11. 11)
      • C. Shannon , W. Weaver . (1949) The mathematical theory of communication.
    12. 12)
      • F. Gabbiani . Coding of time-varying signals in spike trains of linear and half-wave rectifying neurons. Comp. Neural. Syst. , 61 - 85
    13. 13)
      • F. Gabbiani , C. Koch . Coding of time-varying signals in spike trains of integrate-and-fire neurons with random threshold. Neural Comput. , 44 - 66
    14. 14)
      • H.V. Poor . (1988) An introduction to signal detection and estimation.
    15. 15)
      • R.E. Dolmetsch , R.S. Lewis , C.C. Goodnow , J.I. Healy . Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature , 855 - 858
    16. 16)
    17. 17)
      • C. Schöfl , C. Becker , K. Prank , A. Von Zur Mühlen , G. Brabant . Twenty-four-hour rhythms of plasma catecholamines and their relation to cardiovascular parameters in healthy young men. Eur. J. Endocrinol. , 675 - 683
    18. 18)
      • W. Bialek , F. Rieke . Reliability and information transmission in spiking neurons. Trends. Neurosci. , 428 - 434
    19. 19)
      • W. Bialek , F. Rieke , R.R. de Ruyter van Steveninck , D. Warland . Reading a neural code. Science , 1854 - 1857
    20. 20)
      • F. Rieke , D. Warland , W. Bialek . Coding efficiency and information rates in sensory neurons. Europhys. Lett. , 151 - 156
    21. 21)
      • R. Wessel , C. Koch , F. Gabbiani . Coding of time-varying electric field amplitude modulations in a wave-type electric fish. J. Neurophysiol. , 2280 - 2293
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-syb_20050040
Loading

Related content

content/journals/10.1049/ip-syb_20050040
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading