Systems-level questions in Drosophila oogenesis

Access Full Text

Systems-level questions in Drosophila oogenesis

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This paper describes computational and experimental work on pattern formation in Drosophila egg development (oogenesis), an established experimental model for studying cell fate diversification in developing tissues. Epidermal growth factor receptor (EGFR) is a key regulator of pattern formation and morphogenesis in Drosophila oogenesis. EGFR signalling in oogenesis can be genetically manipulated and monitored at many levels, leading to large sets of heterogeneous data that enable the formulation of increasingly quantitative models of pattern formation in these systems.

Inspec keywords: physiological models; biochemistry; enzymes; biological tissues; cellular biophysics; genetics; molecular biophysics

Other keywords: pattern formation; cell fate diversification; Drosophila egg development; genetic manipulation; developing tissues; epidermal growth factor receptor; Drosophila oogenesis

Subjects: Model reactions in molecular biophysics; Physics of subcellular structures; General, theoretical, and mathematical biophysics

References

    1. 1)
      • T. Holbro , N.E. Hynes . ErbB receptors: directing key signalling networks throughout life. Annu. Rev. Pharmacol Toxicol. , 195 - 217
    2. 2)
    3. 3)
      • P. Tomancak , A. Beaton , R. Weiszmann , E. Kwan , S. Shu , S.E. Lewis . Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome Biol. , 12
    4. 4)
      • M. Freeman , C. Klambt , C.S. Goodman , G.M. Rubin . The argos gene encodes a diffusible factor that regulates cell fate decisions in the Drosophila eye. Cell , 6 , 963 - 975
    5. 5)
      • V. Orgogozo , W.B. Grueber . FlyPNS, a database of the Drosophila embryonic and larval peripheral nervous system. BMC Dev. Biol. , 5
    6. 6)
      • C. Ghiglione , K.L. Carraway , L.T. Amundadottir , R.E. Boswell , N. Perrimon , J.B. Duffy . The transmembrane molecule kekkon 1 acts in a feedback loop to negatively regulate the activity of the Drosophila EGF receptor during oogenesis. Cell , 6 , 847 - 856
    7. 7)
      • L.L. Dobens , L.A. Raftery . Integration of epithelial patterning and morphogenesis in Drosophila oogenesis. Dev. Dyn. , 80 - 93
    8. 8)
      • J.D. Wasserman , M. Freeman . An autoregulatory cascade of, E.G.F receptor signalling patterns the Drosophila egg. Cell , 355 - 364
    9. 9)
      • S.E. Choe , M. Boutros , A.M. Michelson , G.M. Church , M.S. Halfon . Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset. Genome Biology , 2
    10. 10)
      • J.B. Dorman , K.E. James , S.E. Fraser , D.P. Kiehart , C.A. Berg . Bullwinkle is required for epithelial morphogenesis during Drosophila oogenesis. Dev. Biol. , 2 , 320 - 341
    11. 11)
      • K.C. Jordan , S.D. Hatfield , M. Tworoger , E.J. Ward , K.A. Fischer , S. Bowers . Genome wide analysis of transcript levels after perturbation of the EGFR pathway in the Drosophila ovary. Dev. Dyn. , 3 , 709 - 724
    12. 12)
      • K.E. James , C.A. Berg . Temporal comparison of broad-complex expression during eggshell-appendage patterning and morphogenesis in two Drosophila species with different eggshell-appendage numbers. Gene expression. Patterns , 5 , 629 - 634
    13. 13)
      • A.C. Spradling . (1993) Developmental genetics of oogenesis’, .
    14. 14)
      • E.J. Ward , C.A. Berg . Juxtaposition between two cell types is necessary for dorsal appendage tube formation. Mech. Devel. , 2 , 241 - 255
    15. 15)
      • Y. Nakamura , K. Matsuno . Species-specific activation of EGF receptor signalling underlies evolutionary diversity in the dorsal appendage number of the genus Drosophila eggshells. Mech. Dev. , 8 , 897 - 907
    16. 16)
      • M. Freeman . (2000) Feedback control of intercellular signalling in development’, Nature.
    17. 17)
      • H. Ruohola-Baker , E. Grell , T.B. Chou , D. Baker , L. Jan , Y.N. Jan . Spatially localized rhomboid is required for establishing the dorsal-ventral axis in Drosophila oogenesis. Cell , 5 , 953 - 965
    18. 18)
      • A. Martinez-Arias , A. Stewart . (2002) Molecular principles of animal development.
    19. 19)
      • G.L. Thio , R.P. Ray , G. Barcelo , T. Schupbach . Localization of gurken RNA in Drosophila oogenesis requires elements in the 5′ and 3′ regions of the transcript. Devel. Biol. , 2 , 435 - 446
    20. 20)
      • W.M. Deng , M. Bownes . Two signalling pathways specify localised expression of the broad-complex in Drosophila eggshell patterning and morphogenesis. Development , 22 , 4639 - 4647
    21. 21)
      • V. Dammai , T. Hsu . EGF-dependent and independent activation of MAP kinase during Drosophila oogenesis. Anat. Rec. A Discov. Mol. Cell Evol. Biol. , 1 , 377 - 382
    22. 22)
      • S. Urban , J.R. Lee , M. Freeman . Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell , 2 , 173 - 182
    23. 23)
      • D. Klein , V.M. Nappi , G.T. Reeves , S.Y. Shvartsman , M.A. Lemmon . Argos inhibits epidermal growth factor receptor signalling by ligand sequestration. Nature , 7003 , 1040 - 1044
    24. 24)
    25. 25)
    26. 26)
    27. 27)
      • T. Casci , M. Freeman . Control of EGF receptor signalling: Lessons from fruitflies. Cancer Metastasis Rev. , 181 - 201
    28. 28)
      • F.S. Neuman-Silberberg , T. Schupbach . Dorsoventral axis formation in Drosophila depends on the correct dosage of the gene gurken. Development , 2457 - 2463
    29. 29)
      • C. Van Buskirk , T. Schupbach . Versatility in signalling: multiple responses to EGF receptor activation during Drosophila oogenesis. Trends Cell Biol. , 1 - 4
    30. 30)
      • A. Reich , A. Sapir , B.Z. Shilo . Sprouty, a general inhibitor of receptor tyrosine kinase signalling. Development , 18 , 413 - 447
    31. 31)
      • S.Y. Shvartsman , C.B. Muratov , D.A. Lauffenburger . Modeling and computational analysis of EGF receptor-mediated cell communication in Drosophila oogenesis. Development , 11 , 2577 - 2589
    32. 32)
      • A. Amiri , D. Stein . Dorsoventral patterning: a direct route from ovary to embryo. Curr. Biol. , 15 , R532 - R534
    33. 33)
      • L. Pai , G. Barcelo , T. Schupbach . D-cbl, negative regulator of the Egfr pathway, is required for dorsoventral patterning in Drosophila oogenesis. Cell , 1 , 51 - 61
    34. 34)
      • F. Peri , S. Roth . Combined activities of Gurken and Decapentaplegic specify dorsal chorion structures of the Drosophila egg. Development , 841 - 850
    35. 35)
      • D. Alvarado , A.H. Rice , J.B. Duffy . Bipartite inhibition of drosophila epidermal growth factor receptor by the extracellular and transmembrane domains of kekkon1. Genetics , 1 , 187 - 202
    36. 36)
    37. 37)
      • A.M. Queenan , A. Ghabrial , T. Schupbach . Ectopic activation of torpedo/Egfr, a Drosophila receptor tyrosine kinase, dorsalizes both the eggshell and the embryo. Development , 19 , 3871 - 3880
    38. 38)
      • L.A. Nilson , T. Schupbach . EGF receptor signalling in Drosophila oogenesis. Curr. Top. Dev. Biol. , 203 - 243
    39. 39)
      • Y. Yarden , M.X. Sliwkowski . Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. , 2 , 127 - 137
    40. 40)
      • M. Pribyl , C.B. Muratov , S.Y. Shvartsman . Discrete models of autocrine signalling in epithelial layers. Biophysical Journal , 6 , 3624 - 3635
    41. 41)
      • M. Pribyl , C.B. Muratov , S.Y. Shvartsman . Transitions in the model of epithelial patterning. Devel. Dyn. , 1 , 155 - 159
    42. 42)
    43. 43)
      • B.Z. Shilo . Signaling by the Drosophila epidermal growth factor receptor pathway during development. Exp. Cell Res. , 1 , 140 - 149
    44. 44)
      • N. Barkai , B.Z. Shilo . Modeling pattern formation: counting to two in the Drosophila egg. Curr. Biol. , 14 , R493 - R495
    45. 45)
      • H.E. Hinton . (1981) Biology of insect eggs. Oxford.
    46. 46)
      • K. Kozlov , E. Myasnikova , A. Pisareva , M. Samsonova , J. Reinitz . (2002) A method for two-dimensional registration and construction of the two-dimensional atlas of gene expression patterns in situ, In Silico Biol..
    47. 47)
      • L. Stevens . Twin peaks: Spitz and Argos star in patterning of the Drosophila egg. Cell , 291 - 294
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-syb_20050039
Loading

Related content

content/journals/10.1049/ip-syb_20050039
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading