Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Theoretical analysis of the modal dispersion induced by stresses in a multimode plastic optical fibre

Theoretical analysis of the modal dispersion induced by stresses in a multimode plastic optical fibre

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors have analysed how bending, torsion and tensile stresses affect the dispersion and polarisation in a plastic optical fibre. This respectively becomes locally uniaxial and inhomogeneous, biaxial and inhomogeneous, and uniaxial and homogeneous, with little variation in the dispersion. The polarisation changes rapidly and the induced anisotropy is of the order of that produced in the manufacturing process.

References

    1. 1)
      • S.A. Miller , I.P. Kaminow . (1988) Optical fiber communications II.
    2. 2)
      • T. Kaino . (1992) Polymers for lightwave and integrated optics.
    3. 3)
      • J. Dugas , I. Pierrejean , J. Farenc , J.P. Peichot . Birefringence and internal stress in polystyrene optical fibres. Appl. Opt. , 3545 - 3548
    4. 4)
      • A.M. Vengsarkar , D. Thomas , B.D. Zimmermann , R.O. Claus . Modal dependence of the photoelastic coefficient in multimode, step indexopticalfiber time domain systems. IEEE J. Lightwave Technol. , 812 - 814
    5. 5)
      • A. Papp , H. Harms . Polarisation optics of index-gradient opticalwaveguide fibers. Appl. Opt. , 2406 - 2411
    6. 6)
      • Mitsubishi Rayon Co., Ltd, Eska POFs.
    7. 7)
      • J. Zubia , J. Arrue , A. Mendioroz . Theoretical analysis of thetorsion-induced optical effect in a plastic optical fibre. Opt. Fiber Technol. , 2 , 162 - 167
    8. 8)
      • A.W. Snyder , J.D. Love . (1983) Optical waveguide theory.
    9. 9)
      • D. Hanson . Wiring with plastic. IEEE LTS , 1 , 34 - 39
    10. 10)
      • T. Ishigure , E. Nihei , Y. Koike . Graded index polymer optical fibrefor high speed data communication. Appl. Opt. , 4261 - 4266
    11. 11)
      • D.W. Krevelen . (1990) Properties of polymers.
    12. 12)
      • M. Born , E. Wolf . (1975) Principles of optics.
    13. 13)
      • D.N. Payne , A.J. Barlow , J.J. Ramskov . Development of low andhigh birefringence optical fibers. IEEE J. Quantum Electron. , 477 - 488
    14. 14)
      • J.F. Nye . (1985) Physical properties of crystals.
    15. 15)
      • T. Kaino , K. Katayama . Polymer for optoelectronics. Polym. Eng. Sci. , 1209 - 1214
    16. 16)
      • T. Ishigure , E. Nihei , Y. Koike , C.E. Forbes , L. Lanieve , R. Straff , H.A. Deckers . Large core, high-bandwith polymer optical fiber for nearinfrared use. IEEE Photonics Technol. Lett. , 403 - 405
    17. 17)
      • L.D. Landau , E.M. Lifshitz . (1970) Theory of elasticity.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-opt_19971561
Loading

Related content

content/journals/10.1049/ip-opt_19971561
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address