Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Use of magnetic nanoparticle heating in the treatment of breast cancer

Use of magnetic nanoparticle heating in the treatment of breast cancer

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Magnetic nanoparticles are promising tools for the minimal invasive elimination of small tumours in the breast using magnetically-induced heating. The approach complies with the increasing demand for breast conserving therapies and has the advantage of offering a selective and refined tuning of the degree of energy deposition allowing an adequate temperature control at the target. The biophysical basis of the approach, the magnetic and structural properties of magnetic nanoparticles are reviewed. Results with model targets and in vivo experiments in laboratory animals are reported.

References

    1. 1)
      • Hilger, I., Rapp, A., Greulich, K.O., Kaiser, W.A.: `Assessment of DNA-damages on target tumor cells after thermoablasive heating', 2005, (in press).
    2. 2)
      • Y. Miao , Y. Ni , S. Mulier . Ex vivo experiment on radiofrequency liver ablation with saline infusion through a screw-tip cannulated electrode. J. Surgical Res. , 19 - 24
    3. 3)
      • M. Yanase , M. Shinkai , H. Honda . Antitumor immunity induction by intracellular hyperthermia using magnetite cationic liposomes. Jpn. J. Cancer Res. , 775 - 782
    4. 4)
      • I. Hilger , W. Andrä , R. Bähring . Evaluation of temperature increase with different amounts of magnetite in liver tissue samples. Investigative Radiology
    5. 5)
      • W. Atkinson , I.A. Brezovich , D.P. Chacraborty . Usable frequencies in hyperthermia with thermal seeds. IEEE Trans. Biomed. Eng.
    6. 6)
      • L. Neél . Thermoremanent magnetization of fine powders. Rev. Mod. Phys. , 293 - 296
    7. 7)
      • N.F. Borrelli , A.A. Luderer , J.N. Panzarino . Hysteresis heating for the treatment of tumors. Phys. Med. Biol. , 487 - 494
    8. 8)
      • P. Wust , B. Hildebrandt , G. Sreenivasa . Hyperthermia in combined treatment of cancer. Lancet Oncology , 487 - 497
    9. 9)
    10. 10)
      • R. Murakami , S. Yoshimatsu , Y. Yamashita . Treatment of hepatocellular carcinoma: value of percutaneous microwave coagulation. Am. J. Roentgenol. , 1159 - 1164
    11. 11)
    12. 12)
      • B. Berkovski . (1996) Magnetic fluids and applications handbook.
    13. 13)
      • K.P. Ritchie , B.M. Keller , K.M. Syed . Hyperthermia (heat shock)-induced protein denaturation in liver, muscle and lens tissue as determined by differential scanning calorimetry. Int. J. Hyperthermia
    14. 14)
      • R. Müller , H. Steinmetz , R. Hiergeist . Magnetic particles for medical applications by glass crystallisation . J. Magn. Magn. Mater. , 1539 - 1541
    15. 15)
      • I. Hilger , R. Hiergeist , R. Hergt . Thermal ablation of tumors using magnetic nanoparticles - an in vivo feasibility study. Investigative Radiology , 580 - 586
    16. 16)
      • S.E. Khalafalla , G.W. Reimers . Preparation of dilution-stable aqueous magnetic fluids. IEEE Trans. Magn. , 178 - 183
    17. 17)
      • R. Hergt , R. Hiergeist , I. Hilger . Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. J. Magn. Magn. Mater. , 345 - 357
    18. 18)
      • I. Hilger , J.R. Reichenbach , B. Danz . Characterization of magnetic nanoparticle cell labelling in vitro. European Radiology
    19. 19)
      • R. Hergt , R. Hiergeist , M. Zeisberger . Enhancement of AC-losses of magnetic nanoparticles for heating applications. J. Magn. Magn. Mater. , 358 - 368
    20. 20)
      • Hasegawa, M., Hokkoker, S.: `Magnetic iron oxide-dextran complex and process for its production', US-patent 4101435, .
    21. 21)
      • P. Moroz , S.K. Jones , J. Winter . Targeting liver tumors with hyperthermia: ferromagnetic embolization in a rabbit liver tumor model. A. J. Oncology , 22 - 29
    22. 22)
      • R. Hergt , W. Andrä , C.G. d'Ambly . Physical limits of hyperthermia using magnetite fine particles. IEEE Trans. Magn.
    23. 23)
      • L.C.R. Neél . Influence of thermal fluctuations on the magnetization of ferromagnetic small particles. Acad. Sci. , 664 - 669
    24. 24)
    25. 25)
      • A. Jordan , R. Scholz , P. Wust . Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. J. Magn. Magn. Mater. , 185 - 196
    26. 26)
      • E. Blums , A. Cebers , M. Maiorov . (1997) Magnetic Fluids.
    27. 27)
      • R. Weissleder , A. Moore , U. Mahmood . In vivo magnetic resonance imaging of transgene expression. Nature Med. , 351 - 355
    28. 28)
      • Y. Xu , R. Qian . Analysis of thermal injury process based on enzyme deactivation mechanisms. J. Biomech. Eng.
    29. 29)
      • W. Andrä , W. Andrä , H. Nowak . (1998) Magnetic Hyperthermia, Magnetism in Medicine.
    30. 30)
      • R.A. McCurrie . (1994) Ferromagnetic Materials.
    31. 31)
      • R. Hergt , R. Hiergeist , M. Zeisberger . Enhancement of AC-losses of magnetic nanoparticles for heating applications . J. Magn. Magn. Mater. , 358 - 386
    32. 32)
      • M.A. Joly . (1965) A physico-chemical approach to denaturation of proteins.
    33. 33)
      • I.A. Brezovich , P.R. Palival , F.W. Hetzel . (1988) Low frequency hyperthermia: capacitive and ferromagnetic thermoseed methods, Medical Physics Monograph.
    34. 34)
      • J. Folkmann . Tumor angiogenesis and tissue factor. Nature Med. , 167 - 168
    35. 35)
      • I. Hilger , S. Polloczek , C. Fritsche . Targeted magnetic heating to tumors: an in vitro feasibility study. European Radiology , 2
    36. 36)
      • W. Andrä , C.G. d'Ambly , R. Hergt . Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia. J. Magn. Magn. Mater. , 197 - 203
    37. 37)
      • C. Alexiou , W. Arnold , R.J. Klein . Locoregional cancer treatment with magnetic drug targeting. Cancer Res. , 6641 - 6648
    38. 38)
      • R. Weissleder , D.D. Stark , B.L. Engelstad . Superparamagnetic iron-oxide - pharmacokinetics and toxicity. Am. J. Roentgenology , 167 - 173
    39. 39)
      • M.H.A. Guedes , M.E.A. Guedes , P.C. Morais . Proposal of a magnetohyperthermic system: preliminary biological tests . J. Magn. Magn. Mater. , 2406 - 2407
    40. 40)
      • P. Tartaj , M. del Puerto-Morales , S. Veintemillas-Verdaguer . The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. , R182 - 197
    41. 41)
      • I. Hilger , R. Hergt , W.A. Kaiser . Effects of magnetic thermoablation in muscle tissue using iron oxide particles - an in vitro study. Investigative Radiology
    42. 42)
      • L. Warzemann , J. Schambach , P. Weber . LTS SQUID gradiometer system for in vivo magnetorelaxometry. Supercond. Sci. Technol. , 953 - 955
    43. 43)
      • A.S. Lübbe , C. Bergemann , H. Riess . Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Cancer Res. , 4686 - 4693
    44. 44)
      • A.E. Berkowitz , J.A. Lahut , I.S. Jacobs . Spin pinning at ferrite - organic interfaces. Phys. Rev. Lett.
    45. 45)
      • N. Honda , Q. Guo , H. Uchida . Percutaneous hot saline injection therapy for hepatic tumors: an alternative to percutaneous ethanol injection therapy. Radiology , 53 - 57
    46. 46)
      • W. Weitschies , R. Kötitz , T. Bunte . Determination of relaxing or remanent nanoparticle magnetization provides a novel binding specific technique for the evaluation of immunosassays. Pharm. Pharmacol. Lett. , 5 - 8
    47. 47)
    48. 48)
      • P. Moroz , S.K. Jones , B.N. Gray . Tumor response to arterial embolization hyperthermia and direct injection hyperthermia in a rabbit liver tumor model. J. Surgical Oncology , 149 - 156
    49. 49)
      • J. Heisterkamp , R. van Hillegersberg , J.N.M. IJzermans . Critical temperature and heating time for coagulation damage: implications for interstitial laser coagulation (ILC) of tumors. Lasers Surgery Med.
    50. 50)
      • R. Hergt , R. Hiergeist , I. Hilger . Magnetic nanoparticles for thermoablation. Recent Res. Dev. Mater. Sci. , 723 - 742
    51. 51)
      • R.K. Gilchrist , R. Medal , W.D. Shorey . Selective inductive heating of lymph nodes. Ann. Surgery , 596 - 606
    52. 52)
      • L.W. Organ . Electrophysiologic principles of radiofrequency lesion making. Appl. Neurophysiol. , 69 - 76
    53. 53)
      • A. Jordan , R. Scholz , K. Maier-Hauff . Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J. Magn. Magn. Mater. , 118 - 126
    54. 54)
      • J. Rui , K. Tatsutani , R. Dahiya . Effect of thermal variables on human breast cancer in cryosurgery. Breast Cancer Res. Treatment , 185 - 192
    55. 55)
      • J. Schambach , L. Warzemann , P. Weber . SQUID gradiometer measurement system for magnetorelaxometry in a disturbed environment . IEEE Trans. Appl. Supercond. , 3527 - 3530
    56. 56)
    57. 57)
      • I. Hilger , S. Frühauf , W. Andrä . Magnetic heating as a therapeutic tool. Thermology Int. , 130 - 136
    58. 58)
      • H.I. Vargas , W.C. Dooley , R.A. Gardner . Focused microwave phased array thermotherapy for ablation of early-stage breast cancer: results of thermal dose escalation. Ann. Surgical Oncology , 139 - 146
    59. 59)
      • R. Hiergeist , W. Andrä , N. Buske . Application of magnetite ferrofluids for hyperthermia. J. Magn. Magn. Mater. , 420 - 423
    60. 60)
      • C.S. Kaufman , B. Bachman , P.J. Littrup . Office-based ultrasound-guided cryoablation of breast fibroadenomas. Am. J. Surgery , 394 - 400
    61. 61)
      • S. Yamamoto , K. Takatori , K. Oomoto . Pathological study of percutaneous ethanol injection therapy in experimental and clinical liver cancer. Kan Tan Sui , 827 - 833
    62. 62)
      • I. Hilger , W. Andrä , R. Hergt . Electromagnetic heating of breast tumors in interventional radiology: In vitro and in vivo studies in human cadavers and mice . Radiology , 570 - 575
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-nbt_20055018
Loading

Related content

content/journals/10.1049/ip-nbt_20055018
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address