Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Analysis and circuit model of a multilayer semiconductor slow-wave microstrip line

Analysis and circuit model of a multilayer semiconductor slow-wave microstrip line

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Microwaves, Antennas and Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An analytical single-layer reduction quasi-static formulation to accurately compute all the line parameters of metal insulator semiconductor (MIS) and Schottky contact multilayer slow-wave microstrip lines is presented. It is valid for a wide range of parameters and its validity is compared with the full-wave spectral domain analysis technique. We also obtain a circuit model, which is able to accurately explain the experimental results, including dispersion at the lower end of the frequency range, for both the MIS and Schottky contact microstrip lines. Useful data to design passive components based on these lines are also presented.

References

    1. 1)
    2. 2)
      • E. Yamashita . Variational methods for the analysis of microstrip lines. IEEE Trans. Microw. Theory Tech. , 529 - 535
    3. 3)
      • R.E. Neidert , C.M. Krowne . Voltage variable microwave phase shifter. Electron. Lett. , 626 - 628
    4. 4)
      • S.M. Sze . (1969) Physics of Semiconductor Devices.
    5. 5)
      • H. Hasegawa , M. Furukawa , H. Yanai . Slow wave propagation along a microstrip line on Si-SiO2 system. Proc. IEEE , 297 - 299
    6. 6)
    7. 7)
      • G. Wang , Z. Yu , R.W. Dutton . Device level modelling of metal-insulator-semiconductor interconnects. IEEE Trans. Electron Devices , 8 , 1672 - 1682
    8. 8)
      • G.W. Hughes , R.M. White . Microwave properties of non-linear MIS and Schottky-barrier microstrip. IEEE Trans. Electron Devices , 945 - 956
    9. 9)
      • Y.R. Kwon , V.M. Hietala , K.S. Champlin . Quasi-TEM analysis of slow-wave mode propagation on coplanar microstructure MIS transmission lines. IEEE Trans. Microw. Theory Tech. , 545 - 551
    10. 10)
      • H. Guckel , P.A. Brennan , I. Palocz . A parallel-plate wave-guide approach to micro-miniaturized planar transmission lines for integrated circuits. IEEE Trans. Microw. Theory Tech. , 468 - 476
    11. 11)
    12. 12)
    13. 13)
      • I. Kneppo , J. Fabian , P. Bezousek , P. Hrnicko , M. Pavel . (1994) Microwave Integrated Circuit.
    14. 14)
      • H.A. Wheeler . Transmission properties of parallel strip separated by a dielectric sheet. IEEE Trans. Microw. Theory Tech. , 127 - 184
    15. 15)
    16. 16)
      • J.K. Wee , Y.J. Park , H.S. Min , D.H. Cho , M.H. Seung , H.S. Park . Modelling the substrate effect in interconnect line characteristics of high-speed VLSI circuits. IEEE Trans. Microw. Theory Tech. , 1436 - 1443
    17. 17)
    18. 18)
      • D. Jäger , W. Rabus , W. Eichkoff . Bias dependent small-signal parameters of Schottky contact microstrip lines. Solid-State Electron. , 777 - 783
    19. 19)
    20. 20)
    21. 21)
    22. 22)
      • J.M. Jaffe . A high-frequency variable delay line. IEEE Trans. Electron Devices , 1292 - 1294
    23. 23)
      • I.J. Bahl , R. Garg . Simple and accurate formula for a microstrip with finite strip thickness. IEEE Proc. , 11
    24. 24)
      • H.A. Wheeler . Formulas for the skin depth. Proc. IRE , 412 - 424
    25. 25)
      • J.C. Liou , K.M. Lau . Analysis of slow-wave transmission lines on multi-layered semiconductor structures including conductor loss. IEEE Trans. Microw. Theory Tech. , 814 - 829
    26. 26)
      • E. Hammerstand , O. Jensen . Accurate models for microstrip computer Aided design. IEEE MTTS, Int. Microw. Symp. Dig. , 407 - 409
    27. 27)
      • A.K. Verma , G.H. Sadr . Unified dispersion model for multilayer microstrip line. IEEE Trans. Microwave Theory Tech. , 1587 - 1591
    28. 28)
    29. 29)
      • A.K. Verma , E. Nasimuddin . Propagation Characteristics of Schottky contact suspended slow-wave microstrip line. IEEE Microw. Wire. Compon. Lett. , 9 , 385 - 387
    30. 30)
      • D. Jager , W. Rabus . Bias dependent phase delay of Schottky contact microstrip lines. Electron. Lett. , 9 , 201 - 203
    31. 31)
    32. 32)
    33. 33)
    34. 34)
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-map_20040775
Loading

Related content

content/journals/10.1049/ip-map_20040775
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address