Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Melting layer model evaluation using fall velocity spectra at Ku-band

Melting layer model evaluation using fall velocity spectra at Ku-band

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Microwaves, Antennas and Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A melting layer model used for the rainfall retrievals from spaceborne weather radars is examined using Doppler radar measurements at 13.8 GHz, taken in the zenith-pointing mode. From the pulse-to-pulse variation of the phase measurements, the fall velocity spectra were obtained for each of the range gates from 1 to 5 km, including the melting layer. The spectra show a narrow distribution in the snow region with a mean velocity of 1.5 ms−1, getting wider as the melting progresses. The results indicate that the BB thickness is intensity dependent, which is consistent with previous studies in mid-latitude regions but not reflected in the predictions from the model considered in the paper. Measurements made at lower frequency, i.e. at L-band, also indicate the deficiency of the model in terms of the bright-band thickness. However, because the model has been shown to be consistent with measurements in the tropics, it is suggested that any modification and/or enhancement to the model be applied to mid–latitudes only. Implications for propagation prediction methods are also discussed.

References

    1. 1)
      • J.E. Allnutt . (1989) Satellite-to-ground radiowave propagation – theory, practice and system impact at frequencies above 1 GHz.
    2. 2)
      • International Telecommunication Union Recommendation P. 620–4: ‘Propagation data required for the evaluation of coordination distances in the frequency range 100 MHz to 105 GHz’, ‘Propagation in non-ionised media’, Geneva, 2001.
    3. 3)
      • T. Kawanishi , M. Kuroiwa , K. Kojima , K. Oikawa , T. Kozu , H. Kumagai , K. Okamoto , M. Okumura , H. Nakatsuka , K. Nishikawa . TRMM precipitation radar. Adv. Space Res.
    4. 4)
      • International Telecommunication Union Recommendation P. 618–7: ‘Propagation data and prediction methods required for the design of Earth-space telecommunication systems’, ‘Propagation in non-ionised media’, Geneva, 2001.
    5. 5)
      • M. D'Amico , A.R. Holt , C. Capsoni . An anisotropic model of the melting layer. Radio Sci. , 535 - 552
    6. 6)
      • J. Awaka , Y. Furuhama , M. Hoshiyama , A. Nishitsuji . Model calculations of scattering properties of spherical bright-band particles made of composite dielectrics. J. Radio Res. Lab. , 136 , 73 - 87
    7. 7)
      • A.F. Spilhaus . Drop size intensity and radar echo of rain. J. Meteorol. , 161 - 164
    8. 8)
      • P. Hardaker , A.R. Holt , C.G. Collier . A melting layer model and its use in correcting for the bright band in single-polarisation radar echoes. Q. J. R. Metearol. Soc. , 495 - 525
    9. 9)
      • Thurai, M., Iguchi, T., Goddard, J.W.F., Ong, J.T., Awaka, J.: `Melting layer model evaluation in Singapore', IEE Conf. Publ. No. 491, IEE Int. Conf. on Antennas and Propagation, 2003, Exeter, UK, p. 357–360.
    10. 10)
      • Walden, C.J., Wilson, C.L., Goddard, J.W.F., Paulson, K.L., Willis, M.J., Eastment, J.D.: `A study of the effects of melting snow on communications links in Scotland', IEE Conf. Publ. No. 491, IEE Int. Conf. on Antennas and Propagation, 2003, Exeter, UK, p. 1.357–1.360.
    11. 11)
    12. 12)
      • International Telecommunication Union Radio Regulations Appendix 7: ‘Methods for the determination of the coordination area around an earth station in frequency bands between 100 MHz and 105 GHz’, 2000, Geneva.
    13. 13)
      • Liao, L., Meneghini, R., Iguchi, T.: `Bright-band modeling of air/space-borne microwave radars', IEEE Int. Geosci. and Remote Sens. Symp., 2002, Toronto, Canada, p. 278–280.
    14. 14)
      • P.N. Fletcher , P.J. Hardaker , L.J. Auchterlonie , A.R. Holt . Comparison of experimental and theoretical scattering effects from melting ice spheres at microwave and millimeter wave frequencies. IEE Proc. H , 6 , 545 - 548
    15. 15)
      • J.S. Marshal , W.M. Palmer . The distribution of raindrops with size. J. Meteorol. , 165 - 166
    16. 16)
      • H. Kumagai , K. Nakamura , H. Hanado , K. Okamoto , N. Hosaka , N. Miyano , T. Kozu , N. Takahashi , T. Iguchi , H. Miyauchi . CRL airborne multiparameter precipitation radar (CAMPR): system description and preliminary results. IEICE Trans. Commun. , 6 , 770 - 778
    17. 17)
      • International Telecommunication Union Recommendation P. 452–10: ‘Prediction procedure for the evaluation of microwave interference between stations on the surface of the Earth at frequencies above about 0.7 GHz’, ‘Propagation in non-ionised media’, Geneva, 2001.
    18. 18)
      • Goddard, J.W.F.: `Melting layer studies at S-band and comparisons with a physical model', IEE Conf. Publ. No. 370, IEE Int. Conf. on Antennas and Propagation, UK, p. 881–884.
    19. 19)
      • F. Fabry , I. Zawadski . Long term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci. , 7 , 838 - 851
    20. 20)
      • Reddy, K.K., Kozu, T., Thurai, M., Ohno, Y., Nakamura, K., Jain, A.R., Narayana Rao, D.: `Diagnostic study of tropical precipitating cloud systems using wind profilers at Gadanki, India', MST10 workshop, 2003, Piura, Peru.
    21. 21)
      • R. Meneghini , T. Kozu . (1990) Spaceborne weather radar.
    22. 22)
      • R.K. Crane . Bistatic scatter from rain. IEEE Trans. Antennas Propag , 312 - 320
    23. 23)
      • M. Thurai , J.W.F. Goddard . Prediction scatter measurements from a transhorizon experiment at 11.2 GHz. IEE Proc.-Microw. Antennas Propag. , 1 , 53 - 58
    24. 24)
      • Dissanayake, A.W., McEwan, N.J.: `Radar and attenuation properties of rain and bright band', IEE Conf. Publ. No. 169, Int. Conf. on Antennas and Propagation, 1978, London, p. 125–129.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-map_20040629
Loading

Related content

content/journals/10.1049/ip-map_20040629
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address