http://iet.metastore.ingenta.com
1887

Evanescent wave coupling of whispering gallery modes of a dielectric cylinder

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy article PDF
$23.94
Buy Knowledge Pack
10 articles for $144.00

Abstract

By developing a direct correspondence between a given whispering gallery mode of a dielectric cylinder and a mode of an equivalent waveguide ring resonator, the evanescent wave coupling characteristics of such modes can be simply modelled. This also allows the conditions for resonant excitation of a single whispering gallery mode to be determined. The model needs a coupled mode theory which accurately describes the coupling between a straight waveguide and a curved waveguide to be developed. This theory is checked against BPM results.

References

    1. 1)
      • A.W. Snyder , J.D. Love . Reflection at a curved dielectric interface: electromagnetic tunnelling. IEEE Trans. , 134 - 141
    2. 2)
      • A.W. Snyder , D.J. Mitchell . Whispering-gallery rays within dielectric circles and spheres. Electr. Lett.
    3. 3)
      • E.A.J. Marcatili . Bends in optical dielectric guides. Bell Syst. Tech. J. , 2103 - 2132
    4. 4)
      • C.G.B. Garrett , W. Kaiser , W.L. Bond . Stimulated emission into whispering modes of spheres. Phys. Rev. , 1807 - 1809
    5. 5)
      • H.-B. Lin , A.L. Huston , A.J. Compillo . Some characteristics of a droplet whispering-gallery-mode laser. Opt. Lett. , 614 - 616
    6. 6)
      • T. Baer . Continuous-wave laser oscillation in a Hd : Yag sphere. Opt. Lett. , 392 - 394
    7. 7)
      • S.L. McCall , A.F.J. Levi , R.E. Slusher , S.J. Pearton , R.A. Logan . Whispering-gallery mode microdisk lasers. Appl. Phys. Lett. , 289 - 291
    8. 8)
      • V.B. Braginsky , M.L. Gorodetsky , V.S. Ilchenko . Quality-factor and nonlinear properties of optical whispering-gallery modes. Phys. Lett. A , 393 - 397
    9. 9)
      • S. Schiller , R.L. Byer . High-resolution spectroscopy of whispering gallery modes in large dielectric spheres. Opt. Lett. , 1138 - 1140
    10. 10)
      • M. Matsuhara , A. Watanabe . Coupling of curved transmission lines and applications to optical directional couplers. J. Opt. Soc. Am. , 163 - 168
    11. 11)
      • L.F. Stokes , M. Chodorow , H.J. Shaw . All-single-mode fiber resonator. Opt. Lett. , 288 - 290
    12. 12)
      • A.W. Snyder , J.D. Love . (1983) , Optical waveguide theory.
    13. 13)
      • J.A. Stratton . (1941) , Electromagnetic theory.
    14. 14)
      • M. Abramowitz , I. Stegun . (1964) , Handbook of mathematical functions.
    15. 15)
      • S.C. Hill , R.E. Benner , P.W. Barber , R.K. King . (1988) , Optical effects associated with small particles.
    16. 16)
      • M. Gastine , L. Courtois , J.L. Dormann . Electromagnetic resonances of free dielectric spheres. IEEE Trans. , 694 - 700
    17. 17)
      • R. Sammut , A.W. Snyder . Leaky modes on circular optical waveguides. Appl. Opt. , 477 - 482
    18. 18)
      • A.W. Snyder , D.J. Mitchell . Leaky mode analysis of circular optical waveguides. Opto-electronics , 287 - 297
    19. 19)
      • E.A.J. Marcatili . Dielectric rectangular waveguide and directional coupler for integrated optics. Bell. Syst. Tech. J. , 2071 - 2102
    20. 20)
      • T. Findakly , C.-L. Chen . Optical directional couplers with variable spacing. Appl. Opt. , 769 - 773
    21. 21)
      • E. Hecht , A. Zajac . (1979) , Optics.
    22. 22)
      • D.R. Rowland . Phase-space analysis of alternating Δβ couplers. Opt. Quant. Electr. , 369 - 373
    23. 23)
      • R. Scarmozzino , R.M. Osgood . Comparison of finite-difference and Fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications. J. Opt. Soc. Am. A , 724 - 731
    24. 24)
      • A.W. Snyder , A. Ankiewicz . Optical fibre couplers-optimum solution for unequal cores. J. Lightwave Tech. , 463 - 474
    25. 25)
      • Y.S. Chen , A. Ishimaru . On the general solutions of coupled mode equations with varying coefficients. Proc. IEEE , 1071 - 1072
    26. 26)
      • I. Sugai . A table of solutions of Ricatti's equation. Proc. IRE , 2124 - 2126
    27. 27)
      • H. Goldstein . (1950) , Classical mechanics.
    28. 28)
      • G.-D. Peng , A. Ankiewicz . Intensity-dependent phase shifts in nonlinear coupling devices. J. Mod. Opt. , 353 - 365
    29. 29)
      • A.W. Snyder , J.D. Love . (1983) , Optical waveguides.

Related content

content/journals/10.1049/ip-j.1993.0028
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address