http://iet.metastore.ingenta.com
1887

Modelling high-latitude ionosphere for time-varying plasma convection

Modelling high-latitude ionosphere for time-varying plasma convection

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
Other:
 
IEE Proceedings H (Microwaves, Antennas and Propagation) — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The paper discusses how variations in the pattern of convective plasma flows should be included in self-consistent time-dependent models of the coupled ionosphere-thermosphere system. The author shows how these variations depend upon the mechanism by which the solar wind flow excites the convection. The modelling of these effects is not just of relevance to the polar ionosphere. This is because the influence of convection is not confined to high latitudes: the resultant heating and composition changes in the thermosphere are communicated to lower latitudes by the winds which are also greatly modified by the plasma convection. These thermospheric changes alter the global distribution of plasma by modulating the rates of the chemical reactions which are responsible for the loss of plasma. Hence the modelling of these high-latitude processes is of relevance to the design and operation of HF communication, radar and navigation systems worldwide.

References

    1. 1)
      • Lockwood, M., Cowley, S.W.H.: `Ionospheric convection and the substorm cycle', Substorms 1, proceedings of the first international conference on substorms, ICS-1, 1992, Nordvijk, The Netherlands, ESA SP European Space Agency Publications, p. 99–109.
    2. 2)
      • W.C. Knudsen . Magnetospheric convection and the high-latitude F2 region ionosphere. J. Geophys. Res. , 1046 - 1055
    3. 3)
      • W.C. Knudsen , P.M. Banks , J.D. Winningham , D.M. Klumpar . Numerical model of the convecting F2 ionosphere at high latitudes. J. Geophys. Res. , 4784 - 4792
    4. 4)
      • J.J. Sojka . Global scale, physical models of the F-region ionosphere. Rev. Geophys. , 371 - 403
    5. 5)
      • D. Rees , T.J. Fuller-Rowell , P.E. Sandholt , A. Egeland . (1989) Geomagnetic response of the polar thermosphere and ionosphere, Electromagnetic coupling in the polar clefts and caps.
    6. 6)
      • S. Quegan . The influence of convection on the structure of the high-latitude ionosphere. Phil. Trans. R. Soc. London, A , 119 - 137
    7. 7)
      • S. Quegan , G.J. Bailey , R.J. Moffett , R.A. Heelis , T.J. Fuller-Rowell , D. Rees , R.W. Spiro . A theoretical study of the distribution of ionization in the high-latitude ionosphere and the plasmasphere: first results on the mid-latitute trough and the light ion trough. J. Atmos. Terr. Phys. , 619 - 640
    8. 8)
      • R.T. Tsunoda . High-latitude F-region irregularities: a review and synthesis. Rev. Geophys. , 719 - 760
    9. 9)
      • M. Lockwood , C.I. Barron . (1991) Incoherent scatter radar measurements of the cusp, CLUSTER — dayside polar cusp.
    10. 10)
      • S.W.H. Cowley , J.P. Morelli , M. Lockwood . Displacements of the polar cusp and polar cap related to the X and Y components of the IMF. J. Geophys. Res. , 5557 - 5564
    11. 11)
      • M. Lockwood , S.W.H. Cowley , M.P. Freeman . The excitation of plasma convection in the high latitude ionosphere. J. Geophys. Res. , 7961 - 7971
    12. 12)
      • M.A. Hapgood , G.A. Bowe , M. Lockwood , Y. Tulunay , D.M. Willis . Variability of the interplanetary magnetic field over 24 years: 1963–1986. Planet. Space Sci. , 411 - 423
    13. 13)
      • P.N. Collis , I. Häggström . Plasma convection and auroral precipitation processes associated with the main ionospheric trough at high latitudes. J. Atmos. Terr. Phys. , 389 - 404
    14. 14)
      • D.V. Blagoveshchenskij , L.V. Egrova , V.M. Lukashkin . High latitude ionospheric phenomena diagnostics by high frequency radiowave propagation observations. Radio Sci. , 267 - 274
    15. 15)
      • K. Davies , C.M. Rush . High-frequency ray paths in ionospheric layers with horizontal gradients. Radio Sci. , 95 - 103
    16. 16)
      • B.L. Tedd , H.J. Strangeways , T.B. Jones . Systematic ionospheric electron density tilts at mid-latitudes and their associated HF bearing errors. J. Atmos. Terr. Phys. , 1085 - 1092
    17. 17)
      • P.C. Cannon . Morphology of the high-latitude ionosphere and its implications for HF communications systems. IEE Proc. 1 , 1 - 10
    18. 18)
      • M. Lockwood . A simple model of the effects of the midlatitude total ion trough in the bottomside F layer on HF radiowave propagation. Radio Sci. , 385 - 391
    19. 19)
      • R.A. Heelis . The effects of interplanetary magnetic field orientation on dayside high-latitude convection. J. Geophys. Res. , 2873 - 2880
    20. 20)
      • J.P. Heppner , N.C. Maynard . Empirical high-latitude electric field models. J. Geophys. Res. , 4467 - 4477
    21. 21)
      • P.H. Reiff , J.G. Luhmann , Y. Kamide , J.A. Slavin . (1986) Solar wind control of the polar cap voltage, Solar wind-magnetosphere coupling.
    22. 22)
      • J.M. Holt , R.H. Wand , J.V. Evans , W.L. Oliver . Empirical models for the plasma convection at high latitudes from Millstone Hill observations. J. Geophys. Res. , 203 - 212
    23. 23)
      • E. Friis-Christensen , Y. Kamide , A.D. Richmond , S. Matsushita . Interplanetary magnetic field control of high-latitude ionospheric fields and currents determined from Greenland magnetometer data. J. Geophys. Res. , 1325 - 1338
    24. 24)
      • A.D. Richmond , Y. Kamide , B.-H. Ahn , S.-I. Akasofu , D. Alcayde , M. Blanc , O. De La Beaujardiere , D.S. Evans , J.C. Foster , E. Friis-Christensen , T.J. Fuller-Rowell , J.M. Holt , D. Knipp , H.W. Kroehl , R.P. Lepping , R.J. Pellinen , C. Senior , A.N. Zaitzev . Mapping electrodynamic features of the highlatitude ionosphere from localised observations: combined incoherent-scatter radar and magnetometer measurements from 18–19 January, 1984. J. Geophys. Res. , 5760 - 5776
    25. 25)
      • M. Lockwood . On flow reversal boundaries and cross-cap potential in average models of high latitude convection. Planet. Space Sci. , 397 - 409
    26. 26)
      • S.W.H. Cowley . (1984) Solar wind control of magnetospheric convection, Achievements of the international magnetospheric study, IMS.
    27. 27)
      • J.W. Dungey . Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. , 47 - 48
    28. 28)
      • M. Lockwood , S.W.H. Cowley , H. Todd , D.M. Willis , C.R. Clauer . Ion flows and heating at a contracting polar cap boundary. Planet. Space Sci. , 1229 - 1253
    29. 29)
      • R.E. Holzer , R.L. McPherron , D.A. Hardy . A quantitative model of the magnetospheric flux transfer process. J. Geophys. Res. , 3287 - 3293
    30. 30)
      • G.L. Siscoe , T.S. Huang . Polar cap inflation and deflation. J. Geophys. Res. , 543 - 547
    31. 31)
      • A.D. Farmer , T.J. Fuller-Rowell , S. Quegan . Comparing numerical simulations of the high-latitude ionosphere to an empirical mean model based on EISCAT. Adv. Space Res. , 6 , 43 - 48
    32. 32)
      • S. Quegan , R.S. Gill , M. Lockwood . Comparisons between EISCAT observations and model calculations of the high latitude ionosphere. J. Atmos. Terr. Phys. , 1057 - 1076
    33. 33)
      • M. Lockwood , H.C. Carlson . Production of polar cap electron density patches by transient magnetopause reconnection. Geophys. Res. Lett. , 1731 - 1734

Related content

content/journals/10.1049/ip-h-2.1993.0015
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address