http://iet.metastore.ingenta.com
1887

Chaos

Chaos

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings D (Control Theory and Applications) — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Nonlinear systems can have very complicated nontransient behaviour in addition to the static and periodic solutions familiar to everyone. Mathematicians have known for years about the existence of chaotic solutions (persisting modes of dynamic behaviour that have no simple recurrence properties, even though they are not stochastic), but it is only recently that much progress has been made in analysing them. The paper introduces some of the main features of the study of chaotic solutions and tries to relate them to more familiar topics such as feedback and spectra. The authors believe that chaos is more prevalent than is realised and they hope that readers will be alerted to the possibility that some effects which have been blamed on noise are actually instances of chaotic behaviour of a completely deterministic nature.

References

    1. 1)
      • V.M. Alekseev . Quasirandom oscillations and the problem of capture in the bounded three-body problem. Sov. Math. Dokl. , 1470 - 1473
    2. 2)
      • D.J. Allwringht . A global stability criterion for simple control loops. J. Math. Biol. , 363 - 373
    3. 3)
      • D.P. Atherton . , Nonlinear control engineering.
    4. 4)
      • J. Ballieul , R.W. Brockett , R.B. Washburn . Chaotic motion in nonlinear feedback systems. IEEE Trans. , 990 - 997
    5. 5)
      • A.R. Bishop , T. Schneider . (1978) , Solitons and condensed matter physics.
    6. 6)
      • M.L. Cartwright , J.E. Littlewood . On nonlinear differential equations of the second order. J. London Math. Soc. , 180 - 189
    7. 7)
      • Chow, S.-N., Hale, J.K., Mallet-Paret, J.: `An example of bifurcation to homoclinic orbits', Report, 1979.
    8. 8)
      • Farmer, D., Crutchfield, J., Froehling, H., Packard, N., Shaw, R.: `Power spectra and mixing properties of strange attractors', Report, 1980.
    9. 9)
      • J. Guckenheimer , J. Marsden , M. McCracken . (1976) A strange, strange attractor, The Hopf bifurcation and its applications.
    10. 10)
      • J. Guckenheimer . The bifurcations of quadratic functions. Ann. N. Y. Acad. Sci. , 78 - 85
    11. 11)
      • Haddad, E.K.: `New criteria for bounded-input-bounded-ouput and asymptotic stability of nonlinear systems', paper 32.2, IFAC conference, 1972, Paris.
    12. 12)
      • H. Haken . Analogy between higher instabilities in fluids and lasers. Phys. Lett.
    13. 13)
      • C. Herring , B.A. Huberman . Dislocation motion and solid state turbulence. Appl. Phys. Lett. , 975 - 977
    14. 14)
      • B.A. Huberman , J.P. Crutchfield . Chaotic states of anharmonic systems in periodic fields. Phys. Rev. Lett. , 1743 - 1747
    15. 15)
      • B.A. Huberman , J. Rudnick . Scaling behaviour of chaotic flows. Phys. Rev. Lett.
    16. 16)
      • B.A. Huberman , A.B. Zisook . Power spectra of strange attractors. Phys. Rev. Lett.
    17. 17)
      • B.A. Huberman , J.P. Crutchfield , N.H. Packard . Noise phenomena in Josephson junctions. Appl. Phys. Lett.
    18. 18)
      • T. Li , J.A. Yorke . Period three implies chaos. Amer. Math. Monthly
    19. 19)
      • E.N. Lorenz . Deterministic nonperiodic flow. J. Atmos. Sci. , 130 - 141
    20. 20)
      • E.N. Lorenz , M. Gronela , J.E. Marsden . (1979) On the prevalence of aperiodicity in simple systems, Global analysis.
    21. 21)
      • R.M. May . Deterministic models with chaotic dynamics. Nature , 165 - 166
    22. 22)
      • A.I. Mees . (1981) , Dynamics of feedback systems.
    23. 23)
      • A.I. Mess , P.E. Rapp . Periodic metabolic systems. J. Math. Biol. , 99 - 114
    24. 24)
      • Z. Nitecki . (1971) , Differentiable dynamics.
    25. 25)
      • Packard, N.H., Crutchfield, J.P., Farmer, J.D., shaw, R.S.: `Geometry from a time series', Report, 1980.
    26. 26)
      • D. Rand . The topological classification of Lorenz attractors. Math. Proc. Cambridge Philos. Soc. , 451 - 460
    27. 27)
      • P.E. Rapp , A.I. Mess , C.T. Sparrow . Frequency-dependent biochemical regulation is more accurate than amplitude-dependent control. J. Theor. Biol.
    28. 28)
      • O.E. Rossler . Chaos in abstract kinetics: two prototypes. Bull. Math. Biol. , 275 - 289
    29. 29)
      • O.E. Rossler . Toroidal oscillation in a 3-variable abstract reaction system. Z. Naturforsch. , 299 - 301
    30. 30)
      • O.E. Rossler , A. Pacault , C. Vidal . (1978) Chaos and strange attractors in chemical kinetics, Loin de l'equilibre.
    31. 31)
      • O.E. Rossler . Continuous chaos — four prototype equations. Proc. N. Y. Acad. Sci. , 376 - 394
    32. 32)
      • O.E. Rossler , H. Haken . (1979) Chaos and turbulence, International symposium on synergetics.
    33. 33)
      • D. Ruelle , F. Takens . On the nature of turbulence. Commun. Math. Phys. , 167 - 192
    34. 34)
      • Shaw, R.: `Strange attractors, chaotic behaviour and information flow', Internal report, 1978.
    35. 35)
      • S. Smale . Differentiable dynamical systems. Bull. Am. Math. Soc. , 747 - 817
    36. 36)
      • C.T. Sparrow . Bifurcation and chaotic behaviour in simple feedback systems. J. Theor. Biol. , 93 - 105
    37. 37)
      • Sparrow, C.T.: `Chaotic behaviour in single-loop feedback systems and in the Lorenz equations', 1980, Ph.D. thesis, Cambridge University, Department of Pure Mathematics and Mathematical Statistics.
    38. 38)
      • C.T. Sparrow . Chaotic behaviour in a 3-dimensional feedback system. J. Math. Anal. & Appl.
    39. 39)
      • K. Wegman , O.E. Rossler . Different kinds of chaotic oscillations in the Belousov-Zhabotinskii reaction. Z. Naturforsc. , 1179 - 1183
    40. 40)
      • R.F. Williams . (1976) , The structure of Lorenz attractors.
    41. 41)
      • Yorke, J.A., Yorke, E.D.: `Metastable chaos: the transition to sustained chaotic behaviour in the Lorenz model', Internal report, 1978.
    42. 42)
      • W.G. Vogt , J.H. George . On Aizerman's conjecture and boundedness. IEEE Trans. , 338 - 339
    43. 43)
      • D.P. Atherton , D.H. Owens . Boundedness properties of nonlinear multivariable feedback systems. Electron. Lett. , 18 , 559 - 561
    44. 44)
      • M.W. Hirsch , S. Smale . (1974) , Differential equations, dynamical systems and linear algebra.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-d.1981.0043
Loading

Related content

content/journals/10.1049/ip-d.1981.0043
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address