Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Power loss modelling of short-range ultra wideband pulse transmissions

Power loss modelling of short-range ultra wideband pulse transmissions

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Narrowband path loss models are not applicable to the link budget calculation of ultra wideband (UWB) signals. In the paper, a rigorous analysis reveals the power loss behaviour of short-range UWB pulse systems when operated in a rich multi-path environment. A novel breakpoint is derived that is within the vicinity of the transmitter, and is shown to influence the UWB link budget considerably. Furthermore, it is shown that the power delay profile does not generally follow a simple negative exponential dependency. Also, the effects of perfect and imperfect correlator onto the overall UWB pulse power loss are considered.

References

    1. 1)
      • Muqaibel, A., Jazi, A., Bayram, A., Riad, S.: `Ultra wideband material characterization for indoor propagation', IEEE-APS, 22–27 June 2003, Columbus, Ohio, USA.
    2. 2)
      • B. Allen , M. Ghavami , A. Armogida , H. Aghvami . UWB- the holy grail of wire replacement technology?. Commun. Eng. , 5 , 14 - 17
    3. 3)
    4. 4)
      • A.A.M. Saleh , R.A. Valenzuela . A statistical model for indoor multi-path propagation. IEEE J. Sel. Areas Commun. , 2 , 128 - 137
    5. 5)
      • J.G. Proakis . (1995) Digital communications.
    6. 6)
      • D. Cassioli , M.Z. Win , A.F. Molisch . The ultra-wide bandwidth indoor channel: from statistical model to simulations. IEEE J. Sel. Areas Commun. , 6 , 1247 - 1257
    7. 7)
      • K. Siwiak , H. Bertoni , S.M. Yano . Relation between multi-path and wave propagation attenuation. Electron. Lett. , 1 , 142 - 143
    8. 8)
      • L. Yang , G.B. Giannakis . Ultra-wideband communications, an idea whose time has come. IEEE Signal Process. Mag. , 6 , 26 - 54
    9. 9)
      • Allen, B., Ghorishi, A., Ghavami, M.: `A review of pulse design for impulse radio', IEE Ultra Wideband Workshop, June 2004.
    10. 10)
      • Dohler, M., Allen, B., Armogida, A., McGregor, S., Ghavami, M., Aghvami, A.H.: `A novel power-loss model for short range UWB transmissions', Int. Workshop on Ultra Wideband Systems, May 2004, p. 81–85.
    11. 11)
      • I. Oppermann , M. Hamalainen , J. Iinatti . (2004) UWB theory and applications.
    12. 12)
      • R.B. Ertel , J.H. Reed . Angle and time of arrival statistics for circular and elliptical scattering models. IEEE J. Sel. Areas Commun. , 11 , 1829 - 1840
    13. 13)
      • M.Z. Win , G. Chrisikos , N.R. Sollenberger . Performance of rake reception in dense multi-path channels: implications of spreading bandwidth and selection diversity order. IEEE J. Sel. Areas Commun. , 8 , 1516 - 1525
    14. 14)
      • Dohler, M., Allen, B., Armogida, A., McGregor, S., Ghavami, M., Aghvami, H.: `A new twist on UWB path-loss modelling', VTC Spring, May 2004, Milan, Italy.
    15. 15)
      • L.W. Barclay . (2003) Propagation of radiowaves.
    16. 16)
      • Allen, B., Ghorishi, A., Ghavami, M.: `A review of pulse design for impulse radio', IEE Ultra Wideband Workshop, June 2004, p. 93–97.
    17. 17)
      • Foerster, J.: ‘Channel modeling sub-committee report final’, IEEE P802.15 Wireless Personal Area Networks, February 2003.
    18. 18)
      • S.R. Saunders . (1999) Antennas and propagation for wireless communication systems.
    19. 19)
      • R.J.-M. Cramer , R.A. Scholtz , M.Z. Win . Evaluation of an ultra-wide-band propagation channel. IEEE Trans. Antennas Propag. , 5 , 561 - 570
    20. 20)
      • Sloane, N.J.A.: Sequences A002067/M4458, A007019/M3126, A069286, A092676, and A092677 in ‘The on-line encyclopedia of integer sequences’, http://www.research.att.com/njas/sequences/.
    21. 21)
      • R.C. Qiu . A study of the ultra-wideband wireless propagation channel and optimum UWB receiver design. IEEE J. Sel. Areas Commun. , 9 , 1628 - 1637
    22. 22)
      • Q.H. Spencer , B.D. Jeffs , A.L. Swindlehurst . Modeling the statistical time and angle of arrival characteristics of an indoor multi-path channel. IEEE J. Sel. Areas Commun. , 3 , 347 - 360
    23. 23)
      • C.A. Balanis . (1997) Antenna theory, analysis and design.
    24. 24)
      • M.Z. Win , R.A. Scholtz . Impulse radio: how it works. IEEE Commun. Lett. , 2 , 36 - 38
    25. 25)
      • Q. Li , L.A. Rusch . Multiuser detection for DS-CDMA UWB in the home environment. IEEE J. Sel. Areas Commun. , 9 , 1701 - 1711
    26. 26)
      • D.M. Pozar . Closed-form approximations for link loss in a UWB radio system using small antennas. IEEE Trans. Antennas Propag. , 9 , 2346 - 2352
    27. 27)
      • `MultiBand OFDM physical layer proposal for IEEE 802.15 task group 3a', 2004.
    28. 28)
      • M.Z. Win , R.A. Scholtz . Characterization of ultra-wide bandwidth wireless indoor channels: a communication-theoretic view. IEEE J. Sel. Areas Commun. , 9 , 1613 - 1627
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-com_20050065
Loading

Related content

content/journals/10.1049/ip-com_20050065
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address