http://iet.metastore.ingenta.com
1887

Efficient new approach for modulo 2n−1 addition in RNS

Efficient new approach for modulo 2n−1 addition in RNS

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Computers and Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A new modulo 2n−1 addition algorithm is presented, which is applicable in the residue number system. In contrast to previous work, the input carry in the first stage of the addition is set to one. The associated output carry is then used to conditionally modify the sum to produce the correct modulo 2n−1 result. Moreover, unlike recent adders in the literature, the result never exceeds the dynamic range of the modulus. Actual VLSI implementations using 130 nm standard-cell technology show that the corresponding architectures provide improved trade-offs in the power–delay–area space when compared against existing designs.

References

    1. 1)
      • N.S. Szabo , R.I. Tanaka . (1967) Residue arithmetic and its applications to computer technology.
    2. 2)
      • M.A. Soderstrand , W.K. Jenkins , G.A. Jullien , F.J. Taylor . (1986) Residue number system arithmetic: modern applications in digital signal processing.
    3. 3)
    4. 4)
      • Chaves, R., Sousa, L.: `RDSP: a RISC DSP based on residue number system', Proc. Euromicro Symp. on Digital System Design, September 2003, p. 128–135, Turkey.
    5. 5)
      • Cardarilli, G.C., Del Re, A., Nannarelli, A., Re, M.: `Low-power implementation of polyphase filters in quadratic residue number system', Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS 2004), May 2004, Vavcouver, BC, Canada, 2, p. 725–728.
    6. 6)
      • Mahesh, M.N., Mehendale, M.: `Improving performance of high precision signal processing algorithms on programmable DSPs', Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS 1999), May–June 1999, Orlando, FL, USA, 3, p. 488–491.
    7. 7)
      • Wei, W., Swamy, M.N.S., Ahmad, M.O.: `RNS application for digital image processing', 4thIEEE Int. Workshop System on Chip for Real Time Applications, July 2004, Banff, Alta, Canada, p. 77–80.
    8. 8)
      • Dimitrakopoulos, G., Vergos, H.T., Nikolos, D., Efstathiou, C.: `A family of parallel-prefix modulo 2', Proc. IEEE Int. Conf. on Application-Specific Systems, Architectures, Processors (ASAP 2003), June 2003, The Hague, Netherlands, p. 315–325.
    9. 9)
    10. 10)
    11. 11)
      • M.-H. Sheu , S.-H. Lin , C. Chen , S.-W. Yang . An efficient VLSI design for a residue to binary converter for general balance moduli (2n−3, 2n+1, 2n−1, 2n+3). IEEE Trans. Circuits Syst. II , 3 , 152 - 155
    12. 12)
    13. 13)
      • B. Cao , T. Srikanthan , C.H. Chang . Efficient reverse converters for four-moduli sets {2n−1, 2n, 2n+1, 2n+1−1} and {2n−1, 2n, 2n+1, 2n−1−1}. IEE Proc. Comput. Digital Tech. , 5 , 687 - 696
    14. 14)
    15. 15)
    16. 16)
      • Zimmermann, R.: `Efficient VLSI implementation of modulo (2', Proc. 14th Symp. on Computer Arithmetic (ARITH-14 1999), April 1999, Adelaide, SA, Australia, p. 158–167.
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • Dimitrakopoulos, G., Vergos, H.T., Nikolos, D., Efstathiou, C.: `A systematic methodology for designing area-time efficient parallel-prefix modulo 2', Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS 2003), May 2003, Bangkok, Thailand, 5, p. 225–228.
    21. 21)
    22. 22)
      • J. Ramírez , A. García , U. Meyer-Bäse , F. Taylor , A.J. Lloris . Implementation of RNS-based distributed arithmetic discrete wavelet transform architectures using field-programmable logic. J. VLSI Signal Process. , 1 , 171 - 190
    23. 23)
      • E.D.D. Claudio , F. Piazza , G. Orlandi . Fast combinatorial RNS processors for DSP applications. IEEE Trans. Comput. , 5 , 624 - 633
    24. 24)
    25. 25)
    26. 26)
      • B. Parhami . (2000) Computer arithmetic: algorithms and hardware designs.
    27. 27)
      • P.M. Kogge , H.S. Stone . A parallel algorithm for the efficient solution of a general class of recurrence equations. IEEE Trans. Comput. , 786 - 792
    28. 28)
      • Knowles, S.: `A family of adders', Proc. 15th IEEE Symp. on Computer Arithmetic (ARITH-15 2001), June 2001, CO, USA, Vail, p. 277–281.
    29. 29)
    30. 30)
      • A.A. Hiasat . Efficient residue to binary converter. IEE Proc. Comput. Digital Tech. , 1 , 11 - 16
    31. 31)
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cdt_20050166
Loading

Related content

content/journals/10.1049/ip-cdt_20050166
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address