Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Spin transport in organics and organic spin devices

Spin transport in organics and organic spin devices

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Circuits, Devices and Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors present a theory to describe spin transport across a polymer sandwiched between magnetic contacts and propose organic spin devices based on this theory. It is found that even a weak magnetic field can significantly modify spin transport in polymers through spin precession. This sensitivity can be exploited to design ultrasensitive magnetometers and low-power magnetic-field-effect transistors. It is shown that, at room temperature, the organic magnetometers are capable of detecting sub-nanotesla magnetic fields, and the I–V characteristics of the magnetic-field-effect transistors can be strongly modified by magnetic fields of a few gauss with response times of a few nanoseconds.

References

    1. 1)
    2. 2)
      • Z.G. Yu , M.A. Berding , S. Krishnamurthy . Spin drift, spin precession, and magnetoresistance of noncollinear magnet-polymer-magnet structures. Phys. Rev. B, Condens. Matter Mater. Phys.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • Z.G. Yu , D.L. Smith , A. Saxena , A.R. Bishop . Green's function approach for a dynamical study of transport in metal/organic/metal structures. Phys. Rev. B, Condens. Matter , 16001 - 16010
    8. 8)
    9. 9)
      • I.H. Campbell , D.L. Smith . Physics of organic electronic devices. Solid State Phys. , 1 - 117
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • V.V. Osipov , A.M. Bratkovsky . A class of spin injection-precession ultrafast nanodevices. Appl. Phys. Lett. , 2118 - 2120
    14. 14)
    15. 15)
    16. 16)
    17. 17)
      • Z.G. Yu , M.A. Berding , S. Krishnamurthy . Organic magnetic-field-effect transistors and ultrasensitive magnetometers. J. Appl. Phys.
    18. 18)
    19. 19)
      • Cavallini, M., Biscarini, F., Dediu, V., Nozar, P., Taliani, C., Zamboni, R.: ‘Half metallic response of manganite films at room temperature from spin-polarized scanning tunneling microscopy’, cond-mat/0301101.
    20. 20)
    21. 21)
      • M. Johnson , R.H. Silsbee . Spin-injection experiment. Phys. Rev. B, Condens. Matter , 5326 - 5335
    22. 22)
      • A.G. Aronov , G.E. Pikus . Spin injection into semiconductors. Fiz. Tekh. Poluprovodn. , 1177 - 1179
    23. 23)
      • J.M. Kikkawa , D.D. Awschalom . Lateral drag of spin coherence in gallium arsenide. Nature , 139 - 141
    24. 24)
    25. 25)
      • D.H. Hernando , Y.V. Nazarov , A. Brataas , G.E.W. Bauer . Conductance modulation by spin precession in noncollinear ferromagnet normal-metal ferromagnet systems. Phys. Rev. B, Condens. Matter , 5700 - 5712
    26. 26)
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cds_20050043
Loading

Related content

content/journals/10.1049/ip-cds_20050043
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address