Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Modelling of gas-sensitive conducting polymer devices

Modelling of gas-sensitive conducting polymer devices

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Circuits, Devices and Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Recent studies have shown that conducting polymers are sensitive to a wide range of gases and vapours and may be used in gas-sensing microelectronic devices. The authors present a basic model for polymer gas sensors which consists of a thin uniform polymer film lying on top of a pair of either semi-infinite or finite coplanar electrodes supported by an insulating substrate. It is assumed that the gas, or vapour, diffuses into the film and is, simultaneously, adsorbed at sites randomly distributed throughout the film. The diffusion and adsorption equations are presented in terms of several fundamental dimensionless parameters which describe the underlying chemical and physical properties of the system. Numerical solutions to the equations are calculated for both the gas and adsorbate profiles within the films at various times. These numerical solutions are compared with approximate analytical expressions previously derived for diffusion-rate limited, reaction-rate limited and intermediate cases, and show good agreement. Finally, a semiconductor model of electronic conduction in gas-sensitive polymer films is developed to calculate the theoretical device response to the sorption of organic vapours. This model can be used to investigate the effects of device geometry on sensor response and is therefore a useful design tool for evaluating novel device structures. The model may also be extended to cover other types of device, such as capacitive or mass balance.

http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cds_19952170
Loading

Related content

content/journals/10.1049/ip-cds_19952170
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address