Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Smart and self-organised routing algorithm for efficient IoT communications in smart cities

Internet of Things (IoT) does not stop integrating an important number of components and objects that are characterised by their complexity and heterogeneity. Such constraints make the existing routing protocols unsuitable for IoT communications in a smart cities environment. To accomplish all the expected tasks and satisfy the user services, it is important to guarantee a quality of communication that answers to the requirements of smart cities applications in terms of data and processing. This study addresses the problem of the performance degradation of IoT communications in smart cities and proposes a new routing algorithm to improve them. The proposed algorithm is called SSRA (smart and self-organised routing algorithm), which can select the best route for the packets. SSRA allows a self-organising routing process according to a new situation of the network and devices parameters recently detected. When using SSRA, the communication records an improvement in performance in terms of packet delivery rate, throughput, end-to-end delay and overhead packets. SSRA extends also the devices lifetime by allowing fair and efficient energy consumption.

References

    1. 1)
      • 11. Ahmed, E., Yaqoob, I., Gani, A., et al: ‘Internet-of-things-based smart environments: state of the art taxonomy and open research challenges’, IEEE Wirel. Commun. Mag., 2016, 23, (5), pp. 1016.
    2. 2)
      • 20. Said, O.: ‘Analysis design and simulation of Internet of Things routing algorithm based on ant colony optimization’, Int. J. Commun. Syst., 2016, 30, (8), pp. 120, DOI: 10.1002/dac.3174.
    3. 3)
      • 18. Pino, T., Choudhury, S., Al-Turjman, F.: ‘Dominating set algorithms for wireless sensor networks survivability’, IEEE Access J., 2018, 6, (1), pp. 1752717532.
    4. 4)
      • 31. Hamrioui, S., Lorenz, P.: ‘Efficient medium access protocol for Internet of Things applications’, Int. J. Commun. Syst., 2016, 30, (10), pp. 16, doi:10.1002/dac.3227.
    5. 5)
      • 17. Hasan, M.Z., Al-Turjman, F.: ‘SWARM-based data delivery in social Internet of Things’, Future Gener. Comput. Syst., 2017, pp. 116, DOI: 10.1016/j.future.2017.10.032.
    6. 6)
      • 14. Hasan, M.Z., Al-Turjman, F., Al-Rizzo, H.: ‘Analysis of cross-layer design of quality-of-service forward geographic wireless sensor network routing strategies in green Internet of Things’, IEEE Access J., 2018, 6, (1), pp. 2037120389.
    7. 7)
      • 10. Garcia, L.J.M., Jiménez Taha, M., et al: ‘Wireless technologies for IoT in smart cities’, Netw. Protocols Algorithms, 2018, 10, (1), pp. 2364.
    8. 8)
      • 30. Aschenbruck, N., Ernst, R., Padilla, E.G., et al: ‘Bonnmotion: a mobility scenario generation and analysis tool’. Proc. of the 3rd Int. ICST Conf. on Simulation Tools and Techniques, Malaga, Spain, 15–19 June 2010, p. 51.
    9. 9)
      • 19. Fatima, S.B., Sultana, S.F., Ansari, S.: ‘Survey on energy efficient protocols and challenges in IOT’, Int. J. Adv. Res. Comput. Commun. Eng., 2016, 5, (8), pp. 257260.
    10. 10)
      • 21. Chen, Z., Wang, H., Liu, Y., et al: ‘A context-aware routing protocol on Internet of Things based on sea computing model’, J. Comput., 2012, 7, (1), pp. 96105.
    11. 11)
      • 5. Mohanty, S.P., Choppali, U., Kougianos, E.: ‘Everything you wanted to know about smart cities: the Internet of Things is the backboneIEEE Consum. Electron. Mag., 2016, 5, (3), pp. 6070.
    12. 12)
      • 23. Machado, K., Rosario, D., Cerqueira, E., et al: ‘A routing protocol based on energy and link quality for Internet of Things applications’, Sensors, 2013, 13, pp. 19421964.
    13. 13)
      • 7. Al-Turjman, F.: ‘5G-enabled devices and smart-spaces in social-IoT: an overview’, Future Gener. Comput. Syst., 2017, pp. 113, DOI: 10.1016/j.future.2017.11.035.
    14. 14)
      • 26. Jina, Y., Gormus, S., Kulkarni, P., et al: ‘Content centric routing in IoT networks and its integration in RPL’, Comput. Commun. J., 2016, 89-90, pp. 87104.
    15. 15)
      • 28. Hamrioui, S., Lorenz, P.: ‘EQ-AODV: energy and QoS supported AODV for better performance in WMSNs’. Proceeding of the IEEE ICC 2016 SAC E-Health, Kuala Lumpur, Malaysia, 23–27 May 2016, pp. 16.
    16. 16)
      • 3. Yaqoob Ahmed, I.E., Ahmed, A.I.A., Gani, A., et al: ‘Internet of Things architecture: recent advances taxonomy requirements and open challenges’, IEEE Wirel. Commun. Mag., 2017, 24, (3), pp. 1016.
    17. 17)
      • 6. Mehmood, Y., Ahmad, F., Yaqoob, I., et al: ‘Internet-of-things based smart cities: recent advances and challenges’, IEEE Commun. Mag., 2017, 55, (9), pp. 1624.
    18. 18)
      • 27. Hamrioui, S., Lloret, J., Lorenz, P., et al: ‘Incidence of the improvement of the interactions between MAC and transport protocols on MANET performance’, in ‘Handbook of research on progressive trends in wireless communications and networking advances in wireless technologies and Telecommunication’, (IGI Global, 2014), pp. 275292Chapter 10.
    19. 19)
      • 1. Atzori, L., Iera, A., Morabito, G.: ‘The Internet of Things: a survey’, Comput. Netw. J., 2010, 54, pp. 27872805.
    20. 20)
      • 9. Lloret, J., Tomas, J., Canovas, A., et al: ‘An integrated IoT architecture for smart meteringIEEE Commun. Mag., 2016, 54, (12), pp. 5057.
    21. 21)
      • 2. Rghioui, A., Sendra, S., Lloret, J., et al: ‘Internet of Things for measuring human activities in ambient assisted living and e-health’, Netw. Protocols Algorithms, 2016, 8, (3), pp. 1528.
    22. 22)
      • 8. Al-Turjman, F.: ‘Qos–aware data delivery framework for safety-inspired multimedia in integrated vehicular-IoT’, Comput. Commun. J., 2018, 121, pp. 3343.
    23. 23)
      • 12. Sarangi, S., Kar, S.: ‘Scriptable sensor network applications for rapid development of Internet of Things’, Netw. Protocols Algorithms J., 2014, 6, (1), pp. 3757.
    24. 24)
      • 16. Dhumane, A., Prasad, R., Prasad, J.: ‘Routing issues in internet of things: a survey’. Proc. of the Int. Multi Conf. of Engineers and Computer Scientists 2016 (IMECS 2016), Hong Kong, 16–18 March 2016, vol. I, pp. 19.
    25. 25)
      • 25. Liu, W., Fang, B., Yin, L., et al: ‘A small world based routing approach of heterogeneous strategy in the Internet of Things’. Proceeding of Int. Conf. on Computer Science and Network Technology (ICCSNT), Harbin China, 24–26 December 2011, pp. 10721076.
    26. 26)
      • 4. Zanella, A., Bui, N., Castellani, A., et al: ‘Internet of Things for smart citiesIEEE Internet Things J., 2014, 1, (1), pp. 2232.
    27. 27)
      • 13. Kim, S.: ‘Game based certificate revocation algorithm for Internet of Things security problems’, Ad hoc Sensor Wirel. Netw. J., 2016, 32, (3-4), pp. 319336.
    28. 28)
      • 15. Dhumane, A., Prasad, R.: ‘Routing challenges in Internet of ThingsCSI Commun., 2015, 3, pp. 1920.
    29. 29)
      • 24. Chelloug, S.A.: ‘Energy-efficient content-based routing in Internet of Things’, J. Comput. Commun., 2015, 3, pp. 920.
    30. 30)
      • 29. Varga, A.: ‘The OMNeT++ discrete event simulation system’. Proc. of the European Simulation Multi Conf. (ESM 2001), Prague Czech Republic, 6–9 June 2001.
    31. 31)
      • 22. Yao, H., Fang, C., Guo, Y., et al: ‘An optimal routing algorithm in service customized 5G networks’, Mobile Inf. Syst. J., 2016, 2016, pp. 17, Article ID 6146435 7p.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2018.5022
Loading

Related content

content/journals/10.1049/iet-wss.2018.5022
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address