Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Device-free indoor localisation with small numbers of anchors

Device-free indoor localisation based on received signal strength (RSS) is unobtrusive and cheap. In a world where most environments are rich in ubiquitous small radio transmitters, it has the potential of being used in a ‘parasitic’ way, by exploiting the transmissions for localisation purposes without any need for additional hardware installation. Starting from state of the art, several steps are needed to reach this aim, the first of which are tackled in this study. The most promising algorithms from the literature are used to experiment in a real-world environment and with a rigorous measurement and analysis framework. Their positioning error performance is analysed versus number and position of devices. The original results obtained show that the currently available RSS-based device-free indoor localisation methods may be well suited to serve as a basis for providing a cheap localisation service in smart environments rich in Internet of things radio devices.

References

    1. 1)
      • 24. Wilson, J., Patwari, N.: ‘Spin: a token ring protocol for RSS collection’. Available at http://span.ece.utah.edu/spin, accessed 15/3/2018.
    2. 2)
      • 13. Savazzi, S., Nicoli, M., Carminati, F., et al: ‘A Bayesian approach to device-free localization: modeling and experimental assessment’, IEEE J. Sel. Top. Signal Process., 2014, 8, (1), pp. 1629.
    3. 3)
      • 16. Wagner, B., Striebing, B., Timmermann, D.: ‘A system for live localization in smart environments’. Proc. IEEE Int. Conf. ICNSC, Evry, France, 2013, pp. 684689.
    4. 4)
      • 11. Barsocchi, P., Potortì, F., Nepa, P.: ‘Device-free indoor localization for AAL applications’. Int. Conf. Wireless Mobile Communication and Healthcare, 2012, pp. 361368.
    5. 5)
      • 22. Zhao, Y., Patwari, N., Suresh, J.M.P.: ‘Radio tomographic imaging and tracking of stationary radio tomographic imaging and tracking of stationary and moving people via kernel distance’. Proc. ACM Int. Conf. IPSN, Philadelphia, PA, USA, 2013, pp. 112.
    6. 6)
      • 25. Wilson, J., Patwari, N.: ‘See-through walls: motion tracking using variance-based radio tomography networks’, IEEE Trans. Mob. Comput., 2011, 10, (5), pp. 612621.
    7. 7)
      • 7. Cassarà, P., Potortì, F., Barsocchi, P., et al: ‘Choosing an RSS device-free localization algorithm for ambient assisted living’. Proc. Int. Conf. Indoor Positioning and Indoor Navigation (IPIN), 2015.
    8. 8)
      • 14. Savazzi, S., Nicoli, M., Riva, M.: ‘Radio imaging by cooperative wireless network: localization algorithms and experiments’. Proc. IEEE Int. Conf. WCNC, Paris, France, 2012, pp. 15.
    9. 9)
      • 27. Vapnik, V.: ‘Statistical learning theory’ (Wiley, New York, 1998).
    10. 10)
      • 10. Patel, S.N., Reynolds, M.S., Abowd, G.D.: ‘Detecting human movement by differential air pressure sensing in HVAC system ductwork: an exploration in infrastructure mediated sensing’ (Springer Berlin Heidelberg, Berlin, Heidelberg, 2008), pp. 118.
    11. 11)
      • 17. Wagner, B., Patwari, N., Timmermann, D.: ‘Passive RFID tomographic imaging for device-free user localization’. Proc. IEEE Int. Conf. WPMC, Dresden, Germany, 2012, pp. 120125.
    12. 12)
      • 26. Press, W.H., Teukolsky, S.A., Vetterling, W.T., et al: ‘Numerical recipes’ (Cambridge University Press, Cambridge, 2007).
    13. 13)
      • 6. Wilson, J., Patwari, N.: ‘Radio tomographic imaging with wireless networks’, IEEE Trans. Mob. Comput., 2010, 9, (5), pp. 621632.
    14. 14)
      • 3. Wu, P., Chen, G., Zhu, X., et al: ‘Minimizing receivers under link coverage model for device-free surveillance’, Comput. Commun., 2015, 63, pp. 5364.
    15. 15)
      • 1. Dohr, A., Modre Opsrian, R., Drobics, M., et al: ‘The Internet of things for ambient assisted living’. 2010 Seventh Int. Conf. Information Technology: New Generations (ITNG), 2010, pp. 804809.
    16. 16)
      • 30. Wilson, J., Patwari, N., Vasquez, F.G.: ‘Regularization methods for radio tomographic imaging’. Proc. Virginia Tech Wireless Symp., VA, USA, 2009, pp. 19.
    17. 17)
      • 18. Nannuru, S., Li, Y., Zeng, Y., et al: ‘Radio-frequency tomography for passive indoor multitarget tracking’, IEEE Trans. Mob. Comput., 2013, 12, (12), pp. 23222333.
    18. 18)
      • 2. Wu, P., Wu, X., Chen, G., et al: ‘A few bits are enough: energy efficient device-free localization’, Comput. Commun., 2016, 83, pp. 7280.
    19. 19)
      • 28. Massa, A., Boni, A., Donelli, M.: ‘A classification approach based on SVM for electromagnetic subsurface sensing’, IEEE Trans. Geosci. Remote Sens., 2005, 43, (9), pp. 20842093.
    20. 20)
      • 15. Morelli, C., Nicolini, M., Rampa, V., et al: ‘Hidden Markov models for radio localization in mixed LOS/NLOS conditions’, IEEE Trans. Signal Process., 2007, 5, (4), pp. 15251542.
    21. 21)
      • 19. Wang, J., Gao, Q., Yu, Y., et al: ‘Robust device-free wireless localization based on differential RSS measurements’, IEEE Trans. Ind. Electron., 2013, 60, (12), pp. 59435952.
    22. 22)
      • 29. Platt, J.: ‘Probabilistic outputs for support vector machines and comparison to regularized likelihood methods’, in Alexander, J.S., Peter, B., Bernhard, S., et al (Eds.): ‘Advances in large margin classifiers’ (MIT Press, Cambridge, MA, 1999).
    23. 23)
      • 20. Men, A., Xue, J., Liu, J., et al: ‘Applying background learning algorithms to radio tomographic imaging’. Proc. IEEE Int. Conf. WPMC, Atlantic City, NJ, 2013, pp. 15.
    24. 24)
      • 12. Fink, A., Beikirch, H.: ‘Device-free localization using redundant 2.4 GHz radio signal strength readings’. 2013 Int. Conf. Indoor Positioning and Indoor Navigation (IPIN), 2013, pp. 17.
    25. 25)
      • 21. Maas, D., Wilson, J., Patwari, N.: ‘Toward a rapidly deployable radio tomographic imaging system for tactical operations’. Proc. IEEE Int. Workshop SenseApp, Sydney, Australia, 2013, pp. 18.
    26. 26)
      • 31. Engl, H.W., Hanke, M., Neubauer, A.: ‘Regularization of inverse problems’ (Springer, The Netherlands, 2004).
    27. 27)
      • 32. Barsocchi, P., Chessa, S., Furfari, F., et al: ‘Evaluating AAL solutions through competitive benchmarking: the localization competition’, IEEE Pervasive Comput. Mag., 2013, 12, (4), pp. 7279.
    28. 28)
      • 23. Crossbow Technology: ‘IRIS datasheet’, 2013. Available at http://www.nr2.ufpr.br/~adc/documentos/iris_datasheet.pdf, accessed 15/3/2018.
    29. 29)
      • 5. Viani, F., Martinelli, M., Ioriatti, L., et al: ‘Passive real-time localization through wireless sensor networks’. Proc. IEEE Int. Conf. IGARSS., Cape Town, South Africa, 2009, pp. 718721.
    30. 30)
      • 4. Ossi, K., Bocca, M., Patwari, N.: ‘Enhancing the accuracy of radio tomographic imaging using channel diversity’. IEEE Int. Conf. MASS., Las Vegas, NV, 2012, pp. 19.
    31. 31)
      • 9. Krumm, J., Harris, S., Meyers, B., et al: ‘Multi-camera multi-person tracking for easy living’. Proc. Third IEEE Int. Workshop on Visual Surveillance 2000, 2000, pp. 310.
    32. 32)
      • 8. Valtonen, M., Maentausta, J., Vanhala, J.: ‘Tiletrack: capacitive human tracking using floor tiles’. IEEE Int. Conf. Pervasive Computing and Communications 2009 PerCom 2009, 2009, pp. 110.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2017.0153
Loading

Related content

content/journals/10.1049/iet-wss.2017.0153
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address