http://iet.metastore.ingenta.com
1887

Mobile data sink-based time-constrained data collection from mobile sensors: a heuristic approach

Mobile data sink-based time-constrained data collection from mobile sensors: a heuristic approach

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Wireless Sensor Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In wireless sensor network, sensors are deployed to sense useful data from environment. Sensors are energy-constrained devices. To prolong the sensor network lifetime for large-scale network, nowadays mobile data sinks (MDSs) (collectors/mules) are used for collecting the sensed data from the sensors. In this environment, sensor nodes can directly transfer their sensed data to the MDS. Sensors have limited memory. Therefore, to avoid buffer overflow, the data must be collected by the MDSs within a predefined time interval. The authors assume that a set of mobile sensors are moving arbitrarily on a set of paths. The authors objective is to collect data periodically from all mobile sensors using minimum number of MDSs within a fixed time interval. Here, a data-gathering algorithm is proposed. The authors analyse the complexity of the problem, and evaluate time complexity and performances of the proposed solution.

References

    1. 1)
      • 1. Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H.: ‘An application-specific protocol architecture for wireless microsensor networks’, IEEE Trans. Wirel. Commun., 2002, 1, (4), pp. 660670.
    2. 2)
      • 2. Cheng, C.-T., Tse, C.K., Lau, F.C.M.: ‘A clustering algorithm for wireless sensor networks based on social insect colonies’, IEEE Sens. J., 2011, 11, (3), pp. 711721.
    3. 3)
      • 3. Xu, X., Li, X., Mao, X., et al: ‘A delay-efficient algorithm for data aggregation in multihop wireless sensor networks’, IEEE Trans. Parallel Distrib. Syst., 2011, 22, (1), pp. 163175.
    4. 4)
      • 4. Harb, H., Makhoul, A., Tawil, R., et al: ‘Energy-efficient data aggregation and transfer in periodic sensor networks’, IET Wirel. Sens. Syst., 2014, 4, (4), pp. 149158.
    5. 5)
      • 5. He, J., Ji, S., Pan, Y., et al: ‘Constructing load-balanced data aggregation trees in probabilistic wireless sensor networks’, Trans. Parallel Distrib. Syst., 2014, 25, (7), pp. 16811690.
    6. 6)
      • 6. Senel, F., Younis, M.F., Akkaya, K.: ‘Bio-inspired relay node placement heuristics for repairing damaged wireless sensor networks’, IEEE Trans. Veh. Technol., 2011, 60, (4), pp. 18351848.
    7. 7)
      • 7. Zhao, M., Yang, Y., Wang, C.: ‘Mobile data gathering with load balanced clustering and dual data uploading in wireless sensor networks’, IEEE Trans. Mob. Comput., 2015, 14, (4), pp. 770785.
    8. 8)
      • 8. Cheng, C.-F., Yu, C.-F.: ‘Data gathering in wireless sensor networks: a combine TSP-reduce approach’, IEEE Trans. Veh. Technol., 2016, 65, (4), pp. 23092324.
    9. 9)
      • 9. Xing, G., Wang, T., Jia, W., et al: ‘Rendezvous design algorithms for wireless sensor networks with a mobile base station’. Proc. ACM MobiHoc, 2008, pp. 231240.
    10. 10)
      • 10. Ma, M., Yang, Y., Zhao, M.: ‘Tour planning for mobile data-gathering mechanisms in wireless sensor networks’, IEEE Trans. Veh. Technol., 2013, 62, (4), pp. 14721483.
    11. 11)
      • 11. Gao, S., Zhang, H.: ‘Energy efficient path-constrained sink navigation in delay-guaranteed wireless sensor networks’, J. Netw., 2010, 5, (6), pp. 658665.
    12. 12)
      • 12. Gao, S., Zhang, H., Das, S.K.: ‘Efficient data collection in wireless sensor networks with path-constrained mobile sinks’, IEEE Trans. Mob. Comput., 2011, 10, (5), pp. 592608.
    13. 13)
      • 13. Gong, D., Yang, Y.: ‘Low-latency SINR-based data gathering in wireless sensor networks’, IEEE Trans. Wirel Commun., 2014, 13, (6), pp. 32073221.
    14. 14)
      • 14. Lin, H., Uster, H.: ‘Exact and heuristic algorithms for data-gathering cluster-based wireless sensor network design problem’, IEEE/ACM Trans. Netw., 2014, 22, (3), pp. 903916.
    15. 15)
      • 15. Yuan, B., Orlowska, M., Sadiq, S.: ‘On the optimal robot routing problem in wireless sensor networks’, IEEE Trans. Knowl. Data Eng., 2007, 19, (9), pp. 12521261.
    16. 16)
      • 16. Somasundara, A.A., Ramamoorthy, A., Srivastava, M.B.: ‘Mobile element scheduling with dynamic deadlines’, IEEE Trans. Mobile Comput., 2007, 6, (4), pp. 395410.
    17. 17)
      • 17. Tao, J., He, L., Zhuang, Y., et al: ‘Sweeping and active skipping in wireless sensor networks with mobile elements’. Proc. IEEE GLOBECOM, 2012, pp. 106111.
    18. 18)
      • 18. Li, M., Cheng, W., Liu, K., et al: ‘Sweep coverage with mobile sensors’, IEEE Trans. Mob. Comput., 2011, 10, (11), pp. 15341545.
    19. 19)
      • 19. Liu, J.-S., Wu, S.-Y., Chiu, K.-M.: ‘Path planning of a data mule in wireless sensor network using an improved implementation of clustering-based genetic algorithm’. IEEE Symp. Computational Intelligence in Control and Automation (CICA), 2013, pp. 3037.
    20. 20)
      • 20. Wu, S.-Y., Liu, J.-S.: ‘Evolutionary path planning of a data mule in wireless sensor network by using shortcuts’. IEEE Congress on Evolutionary Computation (CEC), 2014, pp. 27082715.
    21. 21)
      • 21. Mathur, P., Nielsen, R.H., Prasad, N.R., et al: ‘Data collection using miniature aerial vehicles in wireless sensor networks’, IET Wirel. Sens. Syst., 2016, 6, (1), pp. 1725.
    22. 22)
      • 22. He, L., Pan, J., Xu, J.: ‘A progressive approach to reducing data collection latency in wireless sensor networks with mobile elements’, IEEE Trans. Mob. Comput., 2013, 12, (7), pp. 13081320.
    23. 23)
      • 23. Kim, D., Uma, R.N., Abay, B.H., et al: ‘Minimum latency multiple data MULE trajectory planning in wireless sensor networks’, IEEE Trans. Mob. Comput., 2014, 13, (4), pp. 838851.
    24. 24)
      • 24. Mai, L., Shangguan, L., Lang, C., et al: ‘Load balanced rendezvous data collection in wireless sensor networks’. IEEE Int. Conf. Mobile Ad-Hoc and Sensor Systems, 2011.
    25. 25)
      • 25. Dash, D., Bishnu, A., Gupta, A., et al: ‘Approximation algorithms for deployment of sensors for line segment coverage in wireless sensor networks’, Wirel. Netw., 2013, 19, (5), pp. 857870.
    26. 26)
      • 26. Gorain, B., Mandal, P. S.: ‘Line sweep coverage in wireless sensor networks’. Communication Systems and Networks (COMSNETS), India, 2014, pp. 16.
    27. 27)
      • 27. Yao, Y., Cao, Q., Vasilakos, A.V.: ‘EDAL: an energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks’, IEEE/ACM Trans. Netw., 2015, 23, (3), pp. 810823.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2017.0106
Loading

Related content

content/journals/10.1049/iet-wss.2017.0106
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address