Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Cooperative localisation over small world WSN using optimal allocation of heterogeneous nodes

Localisation of sensor nodes in a wireless sensor network (WSN) is an important problem in various applications like cyber-physical systems, Internet of things and context aware pervasive systems. Cooperative localisation using multidimensional scaling (MDS) has been used successfully in many localisation applications. A primary requirement in MDS is the computation of accurate distance estimates between pairs of nodes in a WSN. However, the estimated distances are erroneous in MDS especially for node pairs that are connected using multiple hops. This leads to an overall increase in error of location estimates. A recent development in social networks called small world phenomena can be introduced in a WSN leading to small world WSN (SW-WSN). SW-WSN exhibits low average path length and high average clustering coefficient and yields accurate distance estimates between pairs of nodes. In this work, a novel cooperative localisation method that uses heterogeneous nodes (H-nodes) is proposed over SW-WSN. In addition, two optimal H-node allocation methods are also developed for the cooperative localisation method. The significance of the proposed method in reducing localisation error, energy consumption, and bandwidth requirement is illustrated by simulations and extensive experiments on a real WSN testbed.

References

    1. 1)
      • 40. Pandey, O.J., Mahajan, A., Hegde, R.M.: ‘Cooperative localization in small world wireless sensor networks’. IEEE 9th Int. Conf. Communication Systems and Networks (COMSNETS), India, January 2017, pp. 391392.
    2. 2)
      • 13. Mantri, D.S., Prasad, N.R., Prasad, R.: ‘Bandwidth efficient cluster based data aggregation for wireless sensor network’, Comput. Electr. Eng., 2015, 41, pp. 256264.
    3. 3)
      • 7. Wang, L., Xu, Q.: ‘Gps-free localization algorithm for wireless sensor networks’, Sensors, 2010, 10, (6), pp. 58995926.
    4. 4)
      • 3. Chuang, P.J., Jiang, Y.J.: ‘Effective neural network-based node localisation scheme for wireless sensor networks’, IET Wirel. Sens. Syst., 2014, 4, (2), pp. 97103.
    5. 5)
      • 16. Pandey, O.J., Hegde, R.M.: ‘Node localization over small world WSNs using constrained average path length reduction’, Ad Hoc Netw., 2017, 67, pp. 87102.
    6. 6)
      • 34. Watts, D.J., Strogatz, S.H.: ‘Collective dynamics of small world networks’, Nature, 1998, 393, (6684), pp. 440442.
    7. 7)
      • 43. Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H.: ‘An application-specific protocol architecture for wireless microsensor networks’, IEEE Trans. Wirel. Commun., 2002, 1, (4), pp. 660670.
    8. 8)
      • 2. Yu, K., Guo, Y.J., Hedley, M.: ‘TOA-based distributed localization with unknown internal delays and clock frequency offsets in wireless sensor networks’, IET Signal Process., 2009, 3, (3), pp. 106118.
    9. 9)
      • 15. Vijay, G., Bdira, E.B.A., Ibnkahla, M.: ‘Cognition in wireless sensor networks: a perspective’, IEEE Sens. J., 2011, 11, (3), pp. 582592.
    10. 10)
      • 36. Quan, W., Liu, Y., Zhang, H., et al: ‘Enhancing crowd collaborations for software defined vehicular networks’, IEEE Commun. Mag., 2017, 55, (8), pp. 8086.
    11. 11)
      • 5. Gui, L., Yang, M., Fang, P., et al: ‘RSS-based indoor localization using multiplicative distance-correction factor’, IET Wirel. Sens. Syst., 2017, 7, (4), pp. 98104.
    12. 12)
      • 26. Verma, C.K., Tamma, B.R., Manoj, B.S., et al: ‘A realistic small-world model for wireless mesh networks’, IEEE Commun. Lett., 2011, 15, (4), pp. 455457.
    13. 13)
      • 24. Lin, Z.Z., Wen, F.S., Chung, C.Y., et al: ‘Division algorithm and interconnection strategy of restoration subsystems based on complex network theory’, IET Gener. Transm. Distrib., 2011, 5, (6), pp. 674683.
    14. 14)
      • 33. Travers, J., Milgram, S.: ‘The small world problem’, Psychology Today, 1967, 2, (1), pp. 6067.
    15. 15)
      • 14. Jiang, N., Xiao, X., Liu, L.: ‘Localization scheme for wireless sensor networks based on ‘shortcut’ constraint’, Ad Hoc Sens. Wirel. Netw., 2015, 26, (1-4), pp. 119.
    16. 16)
      • 9. Cui, W., Wu, C., Meng, W., et al: ‘Dynamic multidimensional scaling algorithm for 3-d mobile localization’, IEEE Trans. Instrum. Meas., 2016, 65, (12), pp. 28532865.
    17. 17)
      • 20. Cavalcanti, D., Agrawal, D., Kelner, J., et al: ‘Exploiting the small-world effect to increase connectivity in wireless ad hoc networks’. Int. Conf. Telecommunications, Berlin, Heidelberg, August 2004, pp. 388393.
    18. 18)
      • 10. Nayak, P., Devulapalli, A.: ‘A fuzzy logic-based clustering algorithm for wsn to extend the network lifetime’, IEEE Sens. J., 2016, 16, (1), pp. 137144.
    19. 19)
      • 27. Guidoni, D.L., Mini, R.A., Loureiro, A.A.: ‘Applying the small world concepts in the design of heterogeneous wireless sensor networks’, IEEE Comm. Lett., 2012, 16, (7), pp. 953955.
    20. 20)
      • 8. Wymeersch, H., Lien, J., Win, M.Z.: ‘Cooperative localization in wireless networks’, Proc. IEEE, 2009, 97, (2), pp. 427450.
    21. 21)
      • 19. Sharma, G., Mazumdar, R.R.: ‘A case for hybrid sensor networks’, IEEE/ACM Trans. Netw., 2008, 16, (5), pp. 11211132.
    22. 22)
      • 31. Guidoni, D.L., Mini, R.A., Loureiro, A.A.: ‘On the design of resilient heterogeneous wireless sensor networks based on small world concepts’, Comput. Netw., 2010, 54, (8), pp. 12661281.
    23. 23)
      • 25. Pandey, O.J., Kumar, A., Hegde, R.M.: ‘Localization in wireless sensor networks with cognitive small world characteristics’. IEEE Twenty Second National Conf. Communication (NCC), India, March 2016, pp. 16.
    24. 24)
      • 32. Asif, W., Qureshi, H.K., Rajarajan, M.: ‘Variable rate adaptive modulation (vram) for introducing small-world model into wsns’. IEEE Information Sciences and Systems (CISS) 47th Annual Conf., March 2013, pp. 16.
    25. 25)
      • 23. Tong, C., Niu, J.W., Qu, G.Z., et al: ‘Complex networks properties analysis for mobile ad hoc networks’, IET Commun., 2012, 6, (4), pp. 370380.
    26. 26)
      • 1. Mao, G., Fidan, B., Anderson, B.D.: ‘Wireless sensor network localization techniques’, Comput. Netw., 2007, 51, (10), pp. 25292553.
    27. 27)
      • 6. Rashid, B., Rehmani, M.H.: ‘Applications of wireless sensor networks for urban areas: a survey’, J. Netw. Comput. Appl., 2016, 60, pp. 192219.
    28. 28)
      • 39. Zhou, H., Liu, B., Luan, T.H., et al: ‘Chain cluster: engineering a cooperative content distribution framework for highway vehicular communications’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (6), pp. 26442657.
    29. 29)
      • 22. Chung, H.Y., Chung, C.Y., Ou, S.C.: ‘Analysis of a bio-dynamic model via Lyapunov principle and small-world network for tuberculosis’, IET Syst. Biol., 2012, 6, (5), pp. 196206.
    30. 30)
      • 37. Iqbal, Z., Kim, K., Lee, H.N.: ‘A cooperative wireless sensor network for indoor industrial monitoring’, IEEE Trans. Ind. Inf., 2017, 13, (2), pp. 482491.
    31. 31)
      • 30. Jiang, C.J., Chen, C., Chang, J.W., et al: ‘Construct small worlds in wireless networks using data mules’. IEEE Int. Conf. Sensor Networks, Ubiquitous and Trustworthy Computing (SUTC 2008), June 2008, pp. 2835.
    32. 32)
      • 21. Tadayon, N., Zonouz, A.E., Aissa, S., et al: ‘Cost-effective design and evaluation of wireless sensor networks using topology-planning methods in small-world context’, IET Wirel. Sens. Syst., 2014, 4, (2), pp. 4353.
    33. 33)
      • 45. Celebi, H., Arslan, H.: ‘Cognitive positioning system’, U.S. Patent 7,956,807, June 2011.
    34. 34)
      • 35. Albert, R., Barabasi, A.L.: ‘Statistical mechanics of complex networks’, Rev. Mod. Phys., 2002, 74, (1), p. 47.
    35. 35)
      • 11. Kumar, D.: ‘Performance analysis of energy efficient clustering protocols for maximizing lifetime of wireless sensor networks’, IET Wirel. Sens. Syst., 2013, 4, (1), pp. 916.
    36. 36)
      • 18. Helmy, A.: ‘Small worlds in wireless networks’, IEEE Commun. Lett., 2003, 7, (10), pp. 490492.
    37. 37)
      • 41. Brandes, U.: ‘A faster algorithm for betweenness centrality’, J. Math. Sociol., 2001, 25, (2), pp. 163177.
    38. 38)
      • 4. Pagano, S., Peirani, S., Valle, M.: ‘Indoor ranging and localisation algorithm based on received signal strength indicator using statistic parameters for wireless sensor networks’, IET Wirel. Sens. Syst., 2015, 5, (5), pp. 243249.
    39. 39)
      • 17. Chang, L., Chen, X., Wang, Y., et al: ‘Fitloc: fine-grained and low-cost device-free localization for multiple targets over various areas’, IEEE/ACM Trans. Netw. (TON), 2017, 25, (4), pp. 19942007.
    40. 40)
      • 29. Stai, E., Karyotis, V., Papavassiliou, S.: ‘Socially-inspired topology improvements in wireless multi-hop networks’. IEEE Int. Conf. Communications Workshops (ICC), May 2010, pp. 16.
    41. 41)
      • 42. Skiena, S.: ‘‘Dijkstra's algorithm’, implementing discrete mathematics: combinatorics and graph theory with mathematica’, J. Math. Sociol., 2001, 25, (2), pp. 163177.
    42. 42)
      • 44. Wang, A., Heinzelman, W.B., Sinha, A., et al: ‘Energy-scalable protocols for battery-operated microsensor networks’, J. VLSI Signal Process. Syst. Signal, Image Video Technol., 2001, 29, (3), pp. 223237.
    43. 43)
      • 12. Wu, Y., Liu, W.: ‘Routing protocol based on genetic algorithm for energy harvesting-wireless sensor networks’, IET Wirel. Sens. Syst., 2013, 3, (2), pp. 112118.
    44. 44)
      • 38. Zhang, H., Quan, W., Chao, H.C., et al: ‘Smart identifier network: a collaborative architecture for the future internet’, IEEE Netw., 2016, 30, (3), pp. 4651.
    45. 45)
      • 28. Banerjee, A., Agarwal, R., Gauthier, V., et al: ‘A self-organization framework for wireless ad hoc networks as small worlds’, IEEE Trans. Veh. Technol., 2012, 61, (6), pp. 26592673.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2017.0096
Loading

Related content

content/journals/10.1049/iet-wss.2017.0096
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address