http://iet.metastore.ingenta.com
1887

Cooperative localisation over small world WSN using optimal allocation of heterogeneous nodes

Cooperative localisation over small world WSN using optimal allocation of heterogeneous nodes

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Wireless Sensor Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Localisation of sensor nodes in a wireless sensor network (WSN) is an important problem in various applications like cyber-physical systems, Internet of things and context aware pervasive systems. Cooperative localisation using multidimensional scaling (MDS) has been used successfully in many localisation applications. A primary requirement in MDS is the computation of accurate distance estimates between pairs of nodes in a WSN. However, the estimated distances are erroneous in MDS especially for node pairs that are connected using multiple hops. This leads to an overall increase in error of location estimates. A recent development in social networks called small world phenomena can be introduced in a WSN leading to small world WSN (SW-WSN). SW-WSN exhibits low average path length and high average clustering coefficient and yields accurate distance estimates between pairs of nodes. In this work, a novel cooperative localisation method that uses heterogeneous nodes (H-nodes) is proposed over SW-WSN. In addition, two optimal H-node allocation methods are also developed for the cooperative localisation method. The significance of the proposed method in reducing localisation error, energy consumption, and bandwidth requirement is illustrated by simulations and extensive experiments on a real WSN testbed.

References

    1. 1)
      • 1. Mao, G., Fidan, B., Anderson, B.D.: ‘Wireless sensor network localization techniques’, Comput. Netw., 2007, 51, (10), pp. 25292553.
    2. 2)
      • 2. Yu, K., Guo, Y.J., Hedley, M.: ‘TOA-based distributed localization with unknown internal delays and clock frequency offsets in wireless sensor networks’, IET Signal Process., 2009, 3, (3), pp. 106118.
    3. 3)
      • 3. Chuang, P.J., Jiang, Y.J.: ‘Effective neural network-based node localisation scheme for wireless sensor networks’, IET Wirel. Sens. Syst., 2014, 4, (2), pp. 97103.
    4. 4)
      • 4. Pagano, S., Peirani, S., Valle, M.: ‘Indoor ranging and localisation algorithm based on received signal strength indicator using statistic parameters for wireless sensor networks’, IET Wirel. Sens. Syst., 2015, 5, (5), pp. 243249.
    5. 5)
      • 5. Gui, L., Yang, M., Fang, P., et al: ‘RSS-based indoor localization using multiplicative distance-correction factor’, IET Wirel. Sens. Syst., 2017, 7, (4), pp. 98104.
    6. 6)
      • 6. Rashid, B., Rehmani, M.H.: ‘Applications of wireless sensor networks for urban areas: a survey’, J. Netw. Comput. Appl., 2016, 60, pp. 192219.
    7. 7)
      • 7. Wang, L., Xu, Q.: ‘Gps-free localization algorithm for wireless sensor networks’, Sensors, 2010, 10, (6), pp. 58995926.
    8. 8)
      • 8. Wymeersch, H., Lien, J., Win, M.Z.: ‘Cooperative localization in wireless networks’, Proc. IEEE, 2009, 97, (2), pp. 427450.
    9. 9)
      • 9. Cui, W., Wu, C., Meng, W., et al: ‘Dynamic multidimensional scaling algorithm for 3-d mobile localization’, IEEE Trans. Instrum. Meas., 2016, 65, (12), pp. 28532865.
    10. 10)
      • 10. Nayak, P., Devulapalli, A.: ‘A fuzzy logic-based clustering algorithm for wsn to extend the network lifetime’, IEEE Sens. J., 2016, 16, (1), pp. 137144.
    11. 11)
      • 11. Kumar, D.: ‘Performance analysis of energy efficient clustering protocols for maximizing lifetime of wireless sensor networks’, IET Wirel. Sens. Syst., 2013, 4, (1), pp. 916.
    12. 12)
      • 12. Wu, Y., Liu, W.: ‘Routing protocol based on genetic algorithm for energy harvesting-wireless sensor networks’, IET Wirel. Sens. Syst., 2013, 3, (2), pp. 112118.
    13. 13)
      • 13. Mantri, D.S., Prasad, N.R., Prasad, R.: ‘Bandwidth efficient cluster based data aggregation for wireless sensor network’, Comput. Electr. Eng., 2015, 41, pp. 256264.
    14. 14)
      • 14. Jiang, N., Xiao, X., Liu, L.: ‘Localization scheme for wireless sensor networks based on ‘shortcut’ constraint’, Ad Hoc Sens. Wirel. Netw., 2015, 26, (1-4), pp. 119.
    15. 15)
      • 15. Vijay, G., Bdira, E.B.A., Ibnkahla, M.: ‘Cognition in wireless sensor networks: a perspective’, IEEE Sens. J., 2011, 11, (3), pp. 582592.
    16. 16)
      • 16. Pandey, O.J., Hegde, R.M.: ‘Node localization over small world WSNs using constrained average path length reduction’, Ad Hoc Netw., 2017, 67, pp. 87102.
    17. 17)
      • 17. Chang, L., Chen, X., Wang, Y., et al: ‘Fitloc: fine-grained and low-cost device-free localization for multiple targets over various areas’, IEEE/ACM Trans. Netw. (TON), 2017, 25, (4), pp. 19942007.
    18. 18)
      • 18. Helmy, A.: ‘Small worlds in wireless networks’, IEEE Commun. Lett., 2003, 7, (10), pp. 490492.
    19. 19)
      • 19. Sharma, G., Mazumdar, R.R.: ‘A case for hybrid sensor networks’, IEEE/ACM Trans. Netw., 2008, 16, (5), pp. 11211132.
    20. 20)
      • 20. Cavalcanti, D., Agrawal, D., Kelner, J., et al: ‘Exploiting the small-world effect to increase connectivity in wireless ad hoc networks’. Int. Conf. Telecommunications, Berlin, Heidelberg, August 2004, pp. 388393.
    21. 21)
      • 21. Tadayon, N., Zonouz, A.E., Aissa, S., et al: ‘Cost-effective design and evaluation of wireless sensor networks using topology-planning methods in small-world context’, IET Wirel. Sens. Syst., 2014, 4, (2), pp. 4353.
    22. 22)
      • 22. Chung, H.Y., Chung, C.Y., Ou, S.C.: ‘Analysis of a bio-dynamic model via Lyapunov principle and small-world network for tuberculosis’, IET Syst. Biol., 2012, 6, (5), pp. 196206.
    23. 23)
      • 23. Tong, C., Niu, J.W., Qu, G.Z., et al: ‘Complex networks properties analysis for mobile ad hoc networks’, IET Commun., 2012, 6, (4), pp. 370380.
    24. 24)
      • 24. Lin, Z.Z., Wen, F.S., Chung, C.Y., et al: ‘Division algorithm and interconnection strategy of restoration subsystems based on complex network theory’, IET Gener. Transm. Distrib., 2011, 5, (6), pp. 674683.
    25. 25)
      • 25. Pandey, O.J., Kumar, A., Hegde, R.M.: ‘Localization in wireless sensor networks with cognitive small world characteristics’. IEEE Twenty Second National Conf. Communication (NCC), India, March 2016, pp. 16.
    26. 26)
      • 26. Verma, C.K., Tamma, B.R., Manoj, B.S., et al: ‘A realistic small-world model for wireless mesh networks’, IEEE Commun. Lett., 2011, 15, (4), pp. 455457.
    27. 27)
      • 27. Guidoni, D.L., Mini, R.A., Loureiro, A.A.: ‘Applying the small world concepts in the design of heterogeneous wireless sensor networks’, IEEE Comm. Lett., 2012, 16, (7), pp. 953955.
    28. 28)
      • 28. Banerjee, A., Agarwal, R., Gauthier, V., et al: ‘A self-organization framework for wireless ad hoc networks as small worlds’, IEEE Trans. Veh. Technol., 2012, 61, (6), pp. 26592673.
    29. 29)
      • 29. Stai, E., Karyotis, V., Papavassiliou, S.: ‘Socially-inspired topology improvements in wireless multi-hop networks’. IEEE Int. Conf. Communications Workshops (ICC), May 2010, pp. 16.
    30. 30)
      • 30. Jiang, C.J., Chen, C., Chang, J.W., et al: ‘Construct small worlds in wireless networks using data mules’. IEEE Int. Conf. Sensor Networks, Ubiquitous and Trustworthy Computing (SUTC 2008), June 2008, pp. 2835.
    31. 31)
      • 31. Guidoni, D.L., Mini, R.A., Loureiro, A.A.: ‘On the design of resilient heterogeneous wireless sensor networks based on small world concepts’, Comput. Netw., 2010, 54, (8), pp. 12661281.
    32. 32)
      • 32. Asif, W., Qureshi, H.K., Rajarajan, M.: ‘Variable rate adaptive modulation (vram) for introducing small-world model into wsns’. IEEE Information Sciences and Systems (CISS) 47th Annual Conf., March 2013, pp. 16.
    33. 33)
      • 33. Travers, J., Milgram, S.: ‘The small world problem’, Psychology Today, 1967, 2, (1), pp. 6067.
    34. 34)
      • 34. Watts, D.J., Strogatz, S.H.: ‘Collective dynamics of small world networks’, Nature, 1998, 393, (6684), pp. 440442.
    35. 35)
      • 35. Albert, R., Barabasi, A.L.: ‘Statistical mechanics of complex networks’, Rev. Mod. Phys., 2002, 74, (1), p. 47.
    36. 36)
      • 36. Quan, W., Liu, Y., Zhang, H., et al: ‘Enhancing crowd collaborations for software defined vehicular networks’, IEEE Commun. Mag., 2017, 55, (8), pp. 8086.
    37. 37)
      • 37. Iqbal, Z., Kim, K., Lee, H.N.: ‘A cooperative wireless sensor network for indoor industrial monitoring’, IEEE Trans. Ind. Inf., 2017, 13, (2), pp. 482491.
    38. 38)
      • 38. Zhang, H., Quan, W., Chao, H.C., et al: ‘Smart identifier network: a collaborative architecture for the future internet’, IEEE Netw., 2016, 30, (3), pp. 4651.
    39. 39)
      • 39. Zhou, H., Liu, B., Luan, T.H., et al: ‘Chain cluster: engineering a cooperative content distribution framework for highway vehicular communications’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (6), pp. 26442657.
    40. 40)
      • 40. Pandey, O.J., Mahajan, A., Hegde, R.M.: ‘Cooperative localization in small world wireless sensor networks’. IEEE 9th Int. Conf. Communication Systems and Networks (COMSNETS), India, January 2017, pp. 391392.
    41. 41)
      • 41. Brandes, U.: ‘A faster algorithm for betweenness centrality’, J. Math. Sociol., 2001, 25, (2), pp. 163177.
    42. 42)
      • 42. Skiena, S.: ‘‘Dijkstra's algorithm’, implementing discrete mathematics: combinatorics and graph theory with mathematica’, J. Math. Sociol., 2001, 25, (2), pp. 163177.
    43. 43)
      • 43. Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H.: ‘An application-specific protocol architecture for wireless microsensor networks’, IEEE Trans. Wirel. Commun., 2002, 1, (4), pp. 660670.
    44. 44)
      • 44. Wang, A., Heinzelman, W.B., Sinha, A., et al: ‘Energy-scalable protocols for battery-operated microsensor networks’, J. VLSI Signal Process. Syst. Signal, Image Video Technol., 2001, 29, (3), pp. 223237.
    45. 45)
      • 45. Celebi, H., Arslan, H.: ‘Cognitive positioning system’, U.S. Patent 7,956,807, June 2011.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2017.0096
Loading

Related content

content/journals/10.1049/iet-wss.2017.0096
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address