Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Performance of rank metric codes for interference constrained wireless sensor networks

Future wireless communication systems will consist of multiple networks with various capabilities. Wireless networks may encounter severe distortions due to the presence of interfering signals generated at some power stations dedicated to smart grid applications. In fact, severe environmental effects of high voltage substations must be considered, particularly impulsive noise needs to be taken into account. Firstly, to cope with this kind of hostile environment, an efficient channel coding scheme in a mono-user system is proposed, when one source user transmits data directly to one terminal user. Performance analysis shows that the proposed coding schemes based on rank metric codes are very efficient to eliminate impulsive noise in mono-user mode. Furthermore, this approach are expanded in order to show the efficiency of rank codes in Wireless Sensors Networks (WSNs), when considering the problem of collecting data in WSNs in the presence of impulsive noise errors together with AWGN channel. To increase the reliability of the system, an advanced Network Coding technique (NC) is applied based on LRPC (Low Rank Parity Check) codes which exhibits noteworthy performances.

References

    1. 1)
      • 2. Au, M.: ‘Analysis and modelling of radio frequency interferences induced by electric arc discharges in high voltage substations’. PhD Thesis, Electronics Engeneering, École de technologie supérieure, Montréal, 2016.
    2. 2)
      • 7. Yazbek, A.K., Imad, E.Q., Cances, J.P., et al: ‘Low rank parity check codes against Reed-Solomon codes for narrow-band PLC smart grid networks’. IEEE 2016 Int. Conf. on Computer and Communication Engineering (ICCCE), Pattaya, Thailand, 2016.
    3. 3)
      • 12. Ho, T., Koetter, R., Medard, M., et al: ‘The benefits of coding over routing in a randomized setting’, 2003.
    4. 4)
      • 8. Jin, J., Oh, H.M., Choi, S., et al: ‘Performance of polar codes with successive cancellation decoding over PLC channels’. IEEE 2015 Int. Symp. on Power Line Communications and its Applications (ISPLC), Austin, TX, USA, 2015.
    5. 5)
      • 17. Silva, D., Kschischang, F.R., Koetter, R.: ‘A rank-metric approach to error control in random network coding’, IEEE Trans. Inf. Theory, 2008, 54, (9), pp. 39513967.
    6. 6)
      • 18. Richter, G., Plass, S.: ‘Fast decoding of rank-codes with rank errors and column erasures’. Int. Symp. on Information Theory (ISIT) Proc., Erlangen, Germany, 2004, pp. 398398.
    7. 7)
      • 14. Luby, M.: ‘LT codes’. The 43rd Annual IEEE Symp. on Foundations of Computer Science, 2002. Proc., Vancouver, BC, Canada, 2002.
    8. 8)
      • 20. Yazbek, A.K., El-qachchach, I., Cances, J.-P., et al: ‘Low rank parity check codes and their application in PLC smartgrid networks’, Int. J. Commun. Syst.., 2017, 30, (12), e3256.doi:10.1002/dac.3256.
    9. 9)
      • 11. Communications standards news’, IEEE Commun. Mag., 2015, 53, (9), pp. 57.
    10. 10)
      • 5. Dai, B., Liu, R., Hou, Y., et al: ‘EXIT chart aided LDPC code design for symmetric alpha-stable impulsive noise’, IEEE Commun. Lett., 2017, 21, (3), pp. 464467.
    11. 11)
      • 19. Gaborit, P., Murat, G., Ruatta, O., et al: ‘Low rank parity-check codes and their application to cryptography’. Proc. WCC, Bergen, Norway, 2013.
    12. 12)
      • 21. Lièbe, C., Combeau, P., Gaugue, A., et al: ‘Ultra-wideband indoor channel modelling using ray-tracing software for through-the-wall imaging radar’, Int. J. Antennas Propag., 2010, 2010, Article ID 934602, p. 14.
    13. 13)
      • 15. Gabidulin, E.M.: ‘Theory of codes with maximum rank distance’, Probl. Inf. Trans., 1985, 21, pp. 112.
    14. 14)
      • 3. Meerbergen, G.V., Moonen, M., De Man, H.: ‘Combining Reed-Solomon codes and OFDM for impulse noise mitigation: RS-OFDM’. ICASSP, Toulouse, France, 2006.
    15. 15)
      • 4. Kaboré, A.W., Maghdadi, V., Cances, J.P., et al: ‘Performance of gabidulin codes for narrowband PLC smart grid networks’. IEEE Int. Symp. on Power Line Communications and its Applications (ISPLC), Austin, TX, USA, 2015.
    16. 16)
      • 1. Au, M., Gagnon, F., Agba, B.L.: ‘An experimental characterization of substation impulsive noise for a RF channel model’. PIERS Proc. Progress in Electromagnetics Research Symp., Stockholm, Sweden, 2013, vol. 1, pp. 13711376.
    17. 17)
      • 16. Koetter, R., Kschischang, F.R.: ‘Coding for errors and erasures in random network coding’, IEEE Trans. Inf. Theory, 2008, 54, (8), pp. 35793591.
    18. 18)
      • 13. Ahlswede, R., Cai, N., yen Robert Li, S., et al: ‘Network information flow’, IEEE Trans. Inf. Theory, 2000, 46, (4), pp. 12041216.
    19. 19)
      • 9. Arikan, E.: ‘Channel polarization: A method for constructing capacity-achieving codes’. IEEE Int. Symp. On Information Theory, ISIT, Toronto, ON, Canada, 2008.
    20. 20)
      • 10. Hadi, A., Rabie, K.M., Alsusa, E.: ‘Polar codes based OFDM-PLC systems in the presence of middleton class-A noise’. IEEE 2016 10th Int. Symp. on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Prague, Czech Republic, 2016.
    21. 21)
      • 6. Abd-Alaziz, W., Johnston, M., Le Goff, S.: ‘Non-binary turbo codes on additive impulsive noise channels’. IEEE 2016 10th Int. Symp. on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Prague, Czech Republic, 2016.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2017.0095
Loading

Related content

content/journals/10.1049/iet-wss.2017.0095
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address