access icon free Wireless energy-harvesting circuit and system with error-correction ASK demodulator for body sensor network with ultra-high-frequency RFID healthcare system

This study presents a low-power energy-harvesting circuit with error-correction demodulation for body sensor networks with radio-frequency identification (RFID) systems. The proposed circuit adopts a new structure that facilitates the demodulation of amplitude-shift-keying (ASK) signals, and it includes a power unit consisting of a wake-up circuit and a power-on-reset control circuit. The wireless bio-signal acquisition system and the digital processor are implemented on a field-programmable gate array to demonstrate the proposed RFID tag. The proposed energy-harvesting circuit can substantially decrease the capacitance used by the demodulator circuit and the wake-up circuit to as low as 14 pF. Moreover, a detection circuit and a correcting circuit are utilised to reduce the bit error rate of decoding. The wireless bio-signal acquisition scenario is also set up and the communication signal between reader and tag is measured to demonstrate the system that can be employed in body sensor network with the healthcare system. The chip was implemented in complementary metal–oxide–semiconductor 0.18 μm technology. The sensitivity of this work is − 13 dBm. The pulse width error can be reduced to <1% by the error-correction demodulator to fit the EPC Gen-2 standard.

Inspec keywords: radiofrequency identification; body sensor networks; error correction codes; health care; CMOS integrated circuits; demodulators; low-power electronics; energy harvesting; detector circuits; amplitude shift keying; biomedical electronics; field programmable gate arrays

Other keywords: body sensor network; decoding; ultra-high-frequency RFID healthcare system; wireless bio-signal acquisition system; digital processor; low-power energy-harvesting circuit; complementary metal-oxide-semiconductor technology; EPC Gen-2 standard; size 0.18 mum; bit error rate; detection circuit; wireless energy-harvesting circuit; correcting circuit; power unit; pulse width error; error-correction ASK demodulator; RFID tag; radio-frequency identification system; communication signal; amplitude-shift-keying signal demodulation; wireless energy-harvesting system; wake-up circuit; power-on-reset control circuit; field-programmable gate array

Subjects: RFID systems; Logic circuits; Biomedical communication; CMOS integrated circuits; Modulators, demodulators, discriminators and mixers; Wireless sensor networks; Codes

References

    1. 1)
      • 20. Lin, H.M., Sheng, T.Y., Chen, O.T.C.: ‘An UHF passive RFID transponder using a low-power clock generator without passive components’. 49th IEEE Int. Midwest Symp. on Circuits and Systems, 2006, MWSCAS ‘06, 2006, pp. 1115.
    2. 2)
      • 25. Vaz, A., Solar, H., Rebollo, I., et al: ‘Long range, low power UHF RFID analog front-end suitable for batteryless wireless sensors’, Proc. IEEE MTT-S Int. Microwave Symp. Digest (MTT), 2010, pp. 836839.
    3. 3)
      • 9. Garfinkel, S.L., Juels, A., Pappu, R.: ‘RFID privacy: an overview of problems and proposed solutions’, IEEE Secur. Priv., 2005, 3, (3), pp. 3443.
    4. 4)
      • 10. Mohammad, K.K., Mohammad, M.N., Nasserian, M.: ‘A fully digital ASK demodulator with digital calibration for bioimplantable devices’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2015, 23, (8), pp. 15571561.
    5. 5)
      • 22. Che, W., Yang, Y., Xu, C., et al: ‘Analysis, design and implementation of semi-passive Gen-2 tag’. Proc. IEEE Int. Conf. on RFID, 2009, pp. 1519.
    6. 6)
      • 16. ICNIRP Guidelines: ‘Limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)’, Health Phys., 2009, 97, (3), pp. 257258.
    7. 7)
      • 4. Yang, G., Xie, L., Mantysalo, M., et al: ‘Bio-patch design and implementation based on a low-power system-on-chip and paper-based inkjet printing technology’, IEEE Trans. Inf. Technol. Biomed., 2012, 16, (6), pp. 10431050.
    8. 8)
      • 11. Lee, H., Kim, J., Ha, D., et al: ‘Differentiating ASK demodulator for contactless smart cards supporting VHBR’, IEEE Trans. Circuits Syst. II, Exp. Briefs, 2015, 62, (7), pp. 641645.
    9. 9)
      • 5. Lorincz, K., Malan, D.J., Fulford-Jones, T.R.F., et al: ‘Sensor networks for emergency response: challenges and opportunities’, IEEE Pervasive Comput., 2004, 3, (4), pp. 1623.
    10. 10)
      • 15. Lin, J.C.: ‘A New IEEE Standard for Safety Levels with Respect to Human Exposure to Radio-Frequency Radiation’, IEEE Antennas Propag. Mag., 2006, 48, (1), pp. 157159.
    11. 11)
      • 6. Ross, P.E.: ‘Managing care through the air’, IEEE Spectr., 2004, 41, (12), pp. 2631.
    12. 12)
      • 24. ‘ant-916-cw-qw’. Available at https://www.linxtechnologies.com/resources/data-guides/ant-916-cw-qw.pdf.
    13. 13)
      • 18. Lee, S.Y., Su, Y.C., Liang, M.C., et al: ‘A programmable implantable micro-stimulator SoC with wireless telemetry: application in close-loop endocardial stimulation for cardiac pacemaker’. Proc. IEEE Int. Solid-State Circuits Conf., Febraury 2011, pp. 4445.
    14. 14)
      • 2. ‘The top 10 causes of death’. Available at http://www.who.int/mediacentre/factsheets/fs310/en/, accessed January 2017.
    15. 15)
      • 27. Lee, J.W., Phan, N.D., Vo, D.H.T.: ‘A fully integrated EPC Gen-2 UHF-band passive tag IC using an efficient power management technique’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 29222932.
    16. 16)
      • 17. Ulcek, J.L., Cleveland, R.F.: ‘Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields- Supplement B’, Federal Communications Commission Office of Engineering and Technology, 1997, pp. 1521.
    17. 17)
      • 8. Lee, S.Y., Wang, L.H., Fang, Q.: ‘A low power RFID integrated circuits for intelligent healthcare systems’, IEEE Trans. Inf. Technol. Biomed., 2010, 14, (6), pp. 13871396.
    18. 18)
      • 26. Dongsheng, L., Huan, L., Xuecheng, Z.: ‘A high sensitivity analog front-end circuit for semi-passive HF RFID tag applied to implantable devices’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2015, 62, (8), pp. 19912002.
    19. 19)
      • 23. Yin, J., Yi, J., Law, M.K., et al: ‘A system-on-chip EPC Gen-2 passive UHF RFID tag with embedded temperature sensor’. Proc. IEEE Int. Solid-State Circuits Conf., Febraury 2010, pp. 308309.
    20. 20)
      • 14. Wang, C.P., Lee, S.Y., Lai, W.C.: ‘An RFID tag system-on-chip with wireless ECG monitoring for intelligent healthcare systems’. Proc. Annual Int. Conf. of IEEE Engineering in Medicine and Biology Society, July, 2013, pp. 54895492.
    21. 21)
      • 12. Gong, C.S.A., Shiue, M.T., Yao, K.W., et al: ‘A truly low-cost high-efficiency ASK demodulator based on self-sampling scheme for bioimplantable applications’, IEEE Trans. Circuits Syst. I, Reulg. Pap., 2015, 55, (6), pp. 14641477.
    22. 22)
      • 7. Wang, L.H., Chen, T.Y., Lin, K.H., et al: ‘A low-power super-regenerative BFSK transceiver for intelligent healthcare monitoring system’. Proc. IEEE Int. Symp. Bioelectronics and Bioinformatics (ISBB), April 2014, pp. 14.
    23. 23)
      • 19. Lee, S.Y., Tsai, T.M., Lai, W.C., et al: ‘A 925 MHz 1.4 μW wireless energy-harvesting circuit with error-correction ASK demodulation for RFID healthcare system’. Proc. IEEE Int. Symp. Circuits Systems, May 2015, pp. 101104.
    24. 24)
      • 13. ‘Tag and features’. Available at http://ipv6.com/articles/applications/Using-RFID-and-IPv6.htm.
    25. 25)
      • 21. Yuan, Y., Yin, S., Dai, F.F.: ‘A novel low-power input-independent MOS AC/DC charge pump’. Proc. IEEE Int. Symp. Circuits Systems, May 2005, pp. 380383.
    26. 26)
      • 3. Yan, L., Bae, J., Lee, S., et al: ‘A 3.9 mW 25-electrode reconfigured sensor for wearable cardiac monitoring system’, IEEE J. Solid-State Circuits, 2011, 46, (1), pp. 353364.
    27. 27)
      • 1. Gullette, E.C., Blumenthal, J.A., Babyak, M., et al: ‘Effects of mental stress on myocardial ischemia during daily life’, Am. Med. Assoc., 1997, 277, (19), pp. 15211526.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2017.0082
Loading

Related content

content/journals/10.1049/iet-wss.2017.0082
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading