http://iet.metastore.ingenta.com
1887

Optimal hops for minimal route power under SINR constraints in wireless sensor networks

Optimal hops for minimal route power under SINR constraints in wireless sensor networks

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Wireless Sensor Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study attempts to deduce the optimal hops in a multi-hop wireless sensor network (WSN) ensuring power-efficient communication under signal-to-interference noise ratio (SINR) constraints. The authors model the total route power consumption under wireless channel quality constraints. WSNs usually employ a multiple-source, single-sink structure for information transfer, necessitating data aggregation. The authors calculate optimal hops for three different data aggregation schemes. They further propose a robust hybrid data aggregation strategy that demonstrates an improved performance with respect to minimal power consumption when compared with employing individual data aggregation schemes. The data aggregation scheme employing optimal hops has been implemented and results have been verified for an illustrative application in water supply and drainage monitoring system. The authors have formulated the problem as a standard convex optimisation problem. They employ Karush–Kuhn–Tucker optimality conditions to derive the analytical expressions of the globally optimal hops, which incorporate the influence of route power, receiver noise, and SINR thresholds. The transmit power and hop count are varied simultaneously until an optimised hop count is achieved. The relation between the node transmit power and the number of hops in the route is derived and the condition for feasible optimal hops is presented.

References

    1. 1)
      • K. Martinez , J.K. Hart , R. Ong .
        1. Martinez, K., Hart, J.K., Ong, R.: ‘Sensor network applications: environmental sensor networks’, IEEE Comput. Soc., 2004, 37, (8), pp. 5056.
        . IEEE Comput. Soc. , 8 , 50 - 56
    2. 2)
      • H. Grindvoll , O. Vermesan , T. Crosbie .
        2. Grindvoll, H., Vermesan, O., Crosbie, T., et al: ‘A wireless sensor network for intelligent building energy management based on multi-communication standards – a case study’, J. Inf. Technol. Constr., 2012, 17, pp. 4362.
        . J. Inf. Technol. Constr. , 43 - 62
    3. 3)
      • A. Mainwaring , J. Polastre , R. Szewczyk .
        3. Mainwaring, A., Polastre, J., Szewczyk, R., et al: ‘Wireless sensor networks for habitat monitoring’. Proc. ACM Int. Workshop Wireless Sensor Networks and Applications, Atlanta, USA, September 2002, pp. 8897.
        . Proc. ACM Int. Workshop Wireless Sensor Networks and Applications , 88 - 97
    4. 4)
      • G. Tychogiorgos , A. Gkelias , K.K. Leung .
        4. Tychogiorgos, G., Gkelias, A., Leung, K.K.: ‘A non-convex distributed optimization framework and its application to wireless ad-hoc networks’, IEEE Trans. Wirel. Commun., 2013, 12, (9), pp. 42864296.
        . IEEE Trans. Wirel. Commun. , 9 , 4286 - 4296
    5. 5)
      • A. Sultan .
        5. Sultan, A.: ‘Sensing and transmit energy optimization for an energy harvesting cognitive radio’, IEEE Wirel. Commun. Lett., 2012, 1, (5), pp. 500503.
        . IEEE Wirel. Commun. Lett. , 5 , 500 - 503
    6. 6)
      • H. Wong , N. Agoulmine , M. Ma .
        6. Wong, H., Agoulmine, N., Ma, M., et al: ‘Network lifetime optimization in wireless sensor networks’, IEEE J. Sel. Areas Commun., 2010, 28, (7), pp. 11271137.
        . IEEE J. Sel. Areas Commun. , 7 , 1127 - 1137
    7. 7)
      • Z.-Q. Luo , W. Yu .
        7. Luo, Z.-Q., Yu, W.: ‘An introduction to convex optimization for communications and signal processing’, IEEE J. Sel. Areas Commun., 2006, 24, (8), pp. 14261438.
        . IEEE J. Sel. Areas Commun. , 8 , 1426 - 1438
    8. 8)
      • A.M. Okazaki , A.A. Frӧhlich .
        8. Okazaki, A.M., Frӧhlich, A.A.: ‘Ant based dynamic hop optimization protocol: a routing algorithm for mobile wireless sensor networks’. IEEE GLOBECOM Workshops, Houstan, TX, USA, May 2011, pp. 11391143.
        . IEEE GLOBECOM Workshops , 1139 - 1143
    9. 9)
      • X. Chen , X. Wang , X. Chen .
        9. Chen, X., Wang, X., Chen, X.: ‘Energy-efficient optimization for wireless information and power transfer in large-scale MIMO systems employing energy beamforming’, IEEE Wirel. Commun. Lett., 2013, 2, (6), pp. 667670.
        . IEEE Wirel. Commun. Lett. , 6 , 667 - 670
    10. 10)
      • M. Holland , T. Wang , B. Tavli .
        10. Holland, M., Wang, T., Tavli, B., et al: ‘Optimizing physical layer parameters for wireless sensor networks’, ACM Trans. Sensor Netw. (TOSN), 2011, 7, (4), pp. 28.128.20.
        . ACM Trans. Sensor Netw. (TOSN) , 4 , 28.1 - 28.20
    11. 11)
      • M.O. Farooq , T. Kunz .
        11. Farooq, M.O., Kunz, T.: ‘Impact of route length on the performance of routing and flow admission control algorithms in wireless sensor networks’, IET Wirel. Sensor Syst., 2016, 6, (1), pp. 1016.
        . IET Wirel. Sensor Syst. , 1 , 10 - 16
    12. 12)
      • M. Kheireddine , R. Abdellatif . (2014)
        12. Kheireddine, M., Abdellatif, R.: ‘Short-hops vs. long-hops – energy efficiency analysis in wireless sensor networks’, in Amine, A., Mohamed, O., Benatallah, B. (Eds.): ‘Network security technologies: design and application’ (IGI Global, Hershey, PA, 2014), pp. 7483.
        .
    13. 13)
      • S.M. Lambor , S. Joshi .
        13. Lambor, S.M., Joshi, S.: ‘Critical hops calculation for energy conservation in a multi-hop wireless sensor network’. Sixth IEEE Int. Conf. Wireless Communication and Sensor Networks (WCSN-2010), Allahabad, India, December 2010.
        . Sixth IEEE Int. Conf. Wireless Communication and Sensor Networks (WCSN-2010)
    14. 14)
      • M. Kheireddine , R. Abdellatif .
        14. Kheireddine, M., Abdellatif, R.: ‘Analysis of hops length in wireless sensor networks’, Sci. Res. Wirel. Sensor Netw., 2014, 6, pp. 109117.
        . Sci. Res. Wirel. Sensor Netw. , 109 - 117
    15. 15)
      • Q. Doug , L. Yu , H. Lu .
        15. Doug, Q., Yu, L., Lu, H., et al: ‘Design of building monitoring systems based on wireless sensor networks’, Sci. Res. Wirel. Sensor Netw., 2010, 2, pp. 703709.
        . Sci. Res. Wirel. Sensor Netw. , 703 - 709
    16. 16)
      • D.C. Hoang , R. Kumar , S.K. Panda .
        16. Hoang, D.C., Kumar, R., Panda, S.K.: ‘Optimal data aggregation tree in wireless sensor networks based on intelligent water drops algorithm’, IET Wirel. Sensor Syst., 2012, 2, (3), pp. 282292.
        . IET Wirel. Sensor Syst. , 3 , 282 - 292
    17. 17)
      • S. Mehrjoo , F. Khunjush .
        17. Mehrjoo, S., Khunjush, F.: ‘Optimal data aggregation tree in wireless sensor networks based on improved river formation dynamics’, Wiley Comput. Intell., 2017(Accepted for publication), 33, pp. 119.
        . Wiley Comput. Intell. , 1 - 19
    18. 18)
      • D. Tse , P. Viswanath . (2005)
        18. Tse, D., Viswanath, P.: ‘Fundamentals of wireless communication’ (Cambridge University Press, Cambridge, United Kingdom, 2005).
        .
    19. 19)
      • J. Sarangapani . (2007)
        19. Sarangapani, J.: ‘Wireless ad hoc and sensor networks: protocols, performance and control’ (CRC Press, Florida, United States, 2007).
        .
    20. 20)
      • S. Boyd , L. Vandenberghe . (2009)
        20. Boyd, S., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, Cambridge, United Kingdom, 2009).
        .
    21. 21)
      • (2011)
        21. White Paper: ‘Energy management and energy optimization in the process industry’ (Siemens, Sector Industry, IA AS S MP 7, 2011).
        .
    22. 22)
      • (2006)
        22. CAMTECH: ‘Handbook for leakage treatment in buildings’ (Government of India, Ministry of Railways, Maharajpur, Gwalior, India, 2006).
        .
    23. 23)
      • F.A. Simonen . (2001)
        23. Simonen, F.A.: ‘Review of failure probability calculations for HFIR primary coolant system piping’ (US Department of Energy, Richland, WA, United States, Pacific Northwest National Laboratory, 2001).
        .
    24. 24)
      • M.J. Fadaee , R. Tabatabaei .
        24. Fadaee, M.J., Tabatabaei, R.: ‘Estimation of failure probability in water pipes network using statistical model’, World Appl. Sci. J., 2010, 11, pp. 11571163.
        . World Appl. Sci. J. , 1157 - 1163
    25. 25)
      • J.S. Seybold . (2005)
        25. Seybold, J.S.: ‘Introduction to RF propagation’ (Wiley Inderscience, Olney, Bucks, United Kingdom, 2005).
        .
    26. 26)
      • M.C. Grant , S.P. Boyd . (2014)
        26. Grant, M.C., Boyd, S.P.: ‘The CVX users’ guide’ (CVX Research Inc., Stanford, United States, Release 2.1, 2014).
        .
    27. 27)
      • 27. ‘Council on tall buildings and urban habitats’. Available at http://www.ctbuh.org/TallBuildings/HeightStatistics/tabid/1735/language/en-US/Default.aspx, accessed October 2016.
        .
    28. 28)
      • 28. IS: 12183 (Part I): ‘Indian standard: code of practice for plumbing in multi-storeyed buildings’, 1987, Reaffirmed 2009.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2017.0078
Loading

Related content

content/journals/10.1049/iet-wss.2017.0078
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address