http://iet.metastore.ingenta.com
1887

Genetic algorithm-based meta-heuristic for target coverage problem

Genetic algorithm-based meta-heuristic for target coverage problem

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Wireless Sensor Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In wireless sensor networks (WSNs), network lifetime and energy consumption are two important parameters which directly impacts each other. In order to enhance the global network lifetime, one should need to utilise the available sensors’ energy in an optimise way. There are several approaches discussed in the literature to maximise the network lifetime for well-known target coverage problem in WSN. The target coverage problem is presented as a maximum network lifetime problem (MLP) and solved heuristically using various approaches. In this study, the authors propose a genetic algorithm (GA)-based meta-heuristic to solve the above said MLP. The GA is a non-linear optimisation solution method which is proven to be better as compared to the column generation or approximation schemes.

References

    1. 1)
      • C.-Y. Chong , S. Kumar .
        1. Chong, C.-Y., Kumar, S.: ‘Sensor networks: evolution, opportunities, and challenges’, Proc. IEEE, 2003, 91, (8), pp. 12471256.
        . Proc. IEEE , 8 , 1247 - 1256
    2. 2)
      • S. Slijepcevic , M. Potkonjak .
        2. Slijepcevic, S., Potkonjak, M.: ‘Power efficient organization of wireless sensor networks’. Proc. of the IEEE Int. Conf. on Communications, Helsinki, Finland, 2001, pp. 472476.
        . Proc. of the IEEE Int. Conf. on Communications , 472 - 476
    3. 3)
      • M. Cardei , M.T. Thai , Y. Li .
        3. Cardei, M., Thai, M.T., Li, Y., et al: ‘Energy-efficient target coverage in wireless sensor networks’. Proc. of the 24th Conf. of the IEEE Communications Society, Miami, USA, 2005, vol. 3, pp. 19761984.
        . Proc. of the 24th Conf. of the IEEE Communications Society , 1976 - 1984
    4. 4)
      • S. Mini , S.K. Udgata , S.L. Sabat .
        4. Mini, S., Udgata, S.K., Sabat, S.L.: ‘A heuristic to maximize network lifetime for target coverage problem in wireless sensor networks’, Ad Hoc Sens. Wirel. Netw., 2011, 13, pp. 251269.
        . Ad Hoc Sens. Wirel. Netw. , 251 - 269
    5. 5)
      • H. Mostafaei , A. Montieri , V. Persico .
        5. Mostafaei, H., Montieri, A., Persico, V., et al: ‘A sleep scheduling approach based on learning automata for WSN partial coverage’, J. Netw. Comput. Appl., 2017, 80, pp. 6778.
        . J. Netw. Comput. Appl. , 67 - 78
    6. 6)
      • H. Mostafaei , M.R. Meybodi .
        6. Mostafaei, H., Meybodi, M.R.: ‘Maximizing lifetime of target coverage in wireless sensor networks using learning automata’, Wirel. Pers. Commun., 2013, 71, (2), pp. 14611477.
        . Wirel. Pers. Commun. , 2 , 1461 - 1477
    7. 7)
      • H. Mostafaei , M. Esnaashari , M.R. Meybodi .
        7. Mostafaei, H., Esnaashari, M., Meybodi, M.R.: ‘A coverage monitoring algorithm based on learning automata for wireless sensor networks’, Appl. Math. Inf. Sci., 2015, 9, (3), pp. 13171325.
        . Appl. Math. Inf. Sci. , 3 , 1317 - 1325
    8. 8)
      • A.K. Pujari , S. Mini , T. Padhi .
        8. Pujari, A.K., Mini, S., Padhi, T., et al: ‘Polyhedral approach for lifetime maximization of target coverage problem’. Proc. of the Int. Conf. on Distributed Computing and Networking, Turku, Finland, 2015, pp. 14.114.8.
        . Proc. of the Int. Conf. on Distributed Computing and Networking , 14.1 - 14.8
    9. 9)
      • S. Manju Chand , B. Kumar .
        9. Manju Chand, S., Kumar, B.: ‘Maximizing network lifetime for target coverage problem in wireless sensor networks’, IET Wirel. Sens. Syst., 2016, 77, (3), pp. 21172139.
        . IET Wirel. Sens. Syst. , 3 , 2117 - 2139
    10. 10)
      • S. Singh , S. Chand , R. Kumar .
        10. Singh, S., Chand, S., Kumar, R., et al: ‘NEECP: a novel energy efficient clustering protocol for prolonging lifetime of WSNs’, IET Wirel. Sens. Syst., 2016, 6, (5), pp. 151157.
        . IET Wirel. Sens. Syst. , 5 , 151 - 157
    11. 11)
      • M. Chaudhary , A.K. Pujari .
        11. Chaudhary, M., Pujari, A.K.: ‘Q-coverage problem in wireless sensor networks’. Proc. Int. Conf. Distributed Computing Networking, Hydearbad, india, 2009, pp. 325330.
        . Proc. Int. Conf. Distributed Computing Networking , 325 - 330
    12. 12)
      • F. Castaño , A. Rossi , M. Sevaux .
        12. Castaño, F., Rossi, A., Sevaux, M., et al: ‘A column generation approach to extend lifetime in wireless sensor networks with coverage and connectivity constraints’, Comput. Oper. Res., 2014, 52, (B), pp. 220230.
        . Comput. Oper. Res. , 220 - 230
    13. 13)
      • S. Singh , S. Chand , B. Kumar .
        13. Singh, S., Chand, S., Kumar, B.: ‘Heterogeneous HEED protocol for wireless sensor networks’, Wirel. Pers. Commun., 2014, 77, (3), pp. 21172139.
        . Wirel. Pers. Commun. , 3 , 2117 - 2139
    14. 14)
      • M. Gentili , A. Raiconi .
        14. Gentili, M., Raiconi, A.: ‘Alpha-coverage to extend network lifetime on wireless sensor networks’, Optimum Lett., 2013, 7, (1), pp. 157172.
        . Optimum Lett. , 1 , 157 - 172
    15. 15)
      • S.K. Gupta , P. Kuilab , P.K. Jana .
        15. Gupta, S.K., Kuilab, P., Jana, P.K.: ‘Genetic algorithm approach for k-coverage and m-connected node placement in target based wireless sensor networks’, Comput. Electr. Eng., 2016, 56, pp. 544556.
        . Comput. Electr. Eng. , 544 - 556
    16. 16)
      • F. Carrabs , R. Cerulli , C. D'Ambrosio .
        16. Carrabs, F., Cerulli, R., D'Ambrosio, C., et al: ‘A hybrid exact approach for maximizing lifetime in sensor networks with complete and partial coverage constraints’, J. Netw. Comput. Appl., 2015, 58, pp. 1222.
        . J. Netw. Comput. Appl. , 12 - 22
    17. 17)
      • A. Raiconi , M. Gentili . (2011)
        17. Raiconi, A., Gentili, M.: ‘Exact and metaheuristic approaches to extend lifetime and maintain connectivity in wireless sensors networks’, ‘Lecture notes in computer science’, vol. 6701 (Springer, Berlin/Heidelberg, 2011), pp. 607619.
        .
    18. 18)
      • H. Zhang , J.C. Hou .
        18. Zhang, H., Hou, J.C.: ‘Maximizing α-lifetime for wireless sensor networks’, Int. J. Sens. Netw., 2006, 1, (1), pp. 6471.
        . Int. J. Sens. Netw. , 1 , 64 - 71
    19. 19)
      • Y. Yoon , Y.-H. Kim .
        19. Yoon, Y., Kim, Y.-H.: ‘An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks’, IEEE Trans. Cybern., 2013, 43, (5), pp. 14731483.
        . IEEE Trans. Cybern. , 5 , 1473 - 1483
    20. 20)
      • M. Rebai , M. Leberre , H. Snoussi .
        20. Rebai, M., Leberre, M., Snoussi, H., et al: ‘Sensor deployment optimization methods to achieve both coverage and connectivity in wireless sensor networks’, Comput. Oper. Res., 2015, 59, pp. 1121.
        . Comput. Oper. Res. , 11 - 21
    21. 21)
      • A. Konak , D.W. Coit , A.E. Smith .
        21. Konak, A., Coit, D.W., Smith, A.E.: ‘Multi-objective optimization using genetic algorithms: a tutorial’, Reliab. Eng. Syst. Saf., 2006, 91, (9), pp. 9921007.
        . Reliab. Eng. Syst. Saf. , 9 , 992 - 1007
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2017.0067
Loading

Related content

content/journals/10.1049/iet-wss.2017.0067
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address