access icon free Design and analysis of a novel wireless resistive analog passive sensor technique

Unobtrusive monitoring of physiological signals in natural settings is important for precision diagnostics. Fully-passive wireless body-worn sensors are viable and promising for unobtrusive monitoring. In this study, the authors present a new class of fully-passive sensor, namely wireless resistive analog passive (WRAP) sensor. It uses resistive transducers at the sensors for converting physical stimulus to load modulation of carrier wireless signal at 13.56 MHz at low power (–20 to 0 dBm). The sensor is simply composed of a loop antenna, a tuning capacitor, and a resistive transducer suitable for the type of physiological signals to be measured. The authors report the characterisation of WRAP sensors for various resistive loads of 1.2 ω to 82 kω at various co-axial distances (5–40 mm) between the TX and RX antennas. They have prototyped and characterised multiple WRAP sensors with several practical measurements of physiological signals such as heart rate, temperature, and pulse oximetry. They also demonstrate bio-potential measurement (down to 400 μV pp ) using metal–oxide–semiconductor field-effect transistor as the transducer. These results show the feasibility of developing a new type of body-worn fully-passive WRAP sensors for unobtrusive physiological signal monitoring at real-life settings for precision diagnostics of many disorders and tracking person-centric therapy efficacy.

Inspec keywords: MOSFET; passive networks; wireless sensor networks; loop antennas

Other keywords: wireless resistive analogue passive sensor technique; carrier wireless signal modulation; resistive transducers; distance 5 mm to 40 mm; temperature; physical stimulus; bio-potential measurement; metal–oxide–semiconductor field-effect transistor; heart rate; physiological signals; pulse oximetry; tuning capacitor; fully-passive sensor; co-axial distances; TX antennas; frequency 13.56 MHz; RX antennas; loop antenna

Subjects: Passive filters and other passive networks; Sensing devices and transducers; Single antennas; Insulated gate field effect transistors; Wireless sensor networks

References

    1. 1)
      • 28. Pincus, S.M., Viscarello, R.R.: ‘Approximate entropy: A regularity measure for fetal heart rate analysis’, Obstetrics & Gynecology, 1992, 79, pp. 249255.
    2. 2)
      • 3. Islam, S.K., Fathy, A., Wang, Y., et al: ‘IEEE microwave magazine’, 2014, 15, (7), pp. S25S33.
    3. 3)
      • 7. Kozma, R., Tanigawaa, T.: ‘Orges furxhi and sergi consul-pacareu: ‘automatic decision support in heterogeneous sensor networks’. Proc. SPIE 8408, Cyber Sensing, 2012, 84080M.
    4. 4)
      • 9. Sabban, A.: ‘Comprehensive study of printed antennas on human body for medical applications’, Intl. J. Adv. Med. Sci., 2013, 1, (1), pp. 110.
    5. 5)
      • 8. Chi, Y.M., Jung, T., Cauwenberghs, G.: ‘Dry-contact and noncontact biopotential electrodes: methodological review’, IEEE Rev. Biomed. Eng., 2010, 3, pp. 106119.
    6. 6)
      • 26. McCraty, R., Atkinson, M., Tiller, W., et al: ‘The effects of emotions on short-term power spectrum analysis of heart rate variabitlity’, American J. Cardiol., 1995, 76, (14), pp. 10891093.
    7. 7)
      • 15. Riistama, J., Aittokallio, E., Verho, J., et al: ‘Totally passive wireless biopotential measurement sensor by utilizing inductively coupled resonance circuits’, Sens. Actuators A, 2010, 157, pp. 313321.
    8. 8)
      • 16. Consul-Pacareu, S., Arellano, D., Morshed, B.I.: ‘Body-worn fully-passive wireless analog sensors for physiological signal capture through load modulation using resistive transducers’. IEEE Healthcare Innovations and Point-of-Care Technologies Conf., Seattle, WA, October 2014, pp. 6770.
    9. 9)
      • 29. Ahmad, S., Tejuja, A., Newman, K.D., et al: ‘Clinical review: A review and analysis of heart rate variability and the diagnosis and prognosis of infection’, Critical Care, 2009, 13, (6), p. 232.
    10. 10)
      • 14. Schwerdt, H.N., Xu, W., Shekhar, S., et al: ‘A fully-pasive wireless microsystem for recording of neuropotentials using RF backscattering methods’, J. Microelectromech. Syst., 2011, 20, (5), pp. 11191130.
    11. 11)
      • 33. Lopez, S.: ‘Pulse oximeter fundamentals and design’. AN4327, Freescale Semiconductor.
    12. 12)
      • 23. Goulbourne, J.A.: ‘HF antenna cookbook’, Texas Instruments, Lit. Number 11-08-26-001, Ed. 1, 2001, pp. 114.
    13. 13)
      • 35. Hai, N.T., Cuong, N.Q., Khoa, T.Q.D., et al: ‘Temporal hemodynamic classification of two hands tapping using functional near-infrared spectroscopy’, Front. Hum. Neurosci., 2013, 7, pp. 516.
    14. 14)
      • 36. Izzetoglu, K., et al: ‘The evolution of field deployable fNIR spectroscopy from bench to clinical settings’, J. Innov. Opt. Sci., 2011, 4, (3), pp. 239250.
    15. 15)
      • 1. Zonouz, A.E., Xing, L., Vokkarane, V.M., et al: ‘Hybrid wireless sensor networks: a reliability, cost and energy-aware approach’, IET Wirel. Sensor Syst., 2016, 6, (2), pp. 4248.
    16. 16)
      • 30. Pamela Griffin, M., Lake, D.E., Bissonette, E.A., et al: ‘Heart rate characteristics: novel physiomarkers to predict neonatal infection and death’, J. Am. Acad. Pediatrics, 2005, 116, (5), pp. 10701074.
    17. 17)
      • 24. Code of Federal Regulations, Title 47, Part 15 (47 CFR 15).
    18. 18)
      • 32. Sund-Levander, M., Forsberg, C., Wahren, L.K.: ‘Normal oral, rectal, tympanic and axillary body temperature in adult men and women: a systematic literature review’, Scand. J. Caring Sci., 2002, 16, (2), pp. 122128.
    19. 19)
      • 2. Mathur, P., Nielsen, R.H., Prasad, N.R., et al: ‘Data collection using miniature aerial vehicles in wireless sensor networks’, IET Wirel. Sensor Syst., 2016, 6, (1), pp. 1725.
    20. 20)
      • 34. Ferrari, M., Muthalib, M., Quaresima, V.: ‘The use of NIR spectroscopy in understanding skeletal muscle physiology: recent developments’, Philos. Trans. A Math. Phys. Eng. Sci., 2011, 369, pp. 45774590.
    21. 21)
      • 11. Bashirullah, R.: ‘Wireless implants’, IEEE Microw. Mag., 2010, 11, (7), pp. S14S23.
    22. 22)
      • 13. Luo, W., Fu, Q., Deng, J., et al: ‘An integrated passive impedance-loaded SAW sensor’, Sens. Actuators B, Chem., 2013, 187, pp. 215220.
    23. 23)
      • 12. Popovic, Z., Falkenstein, E.A., Costinett, D., et al: ‘Low-power far-field wireless powering for wireless sensors’, Proc. IEEE, 2013, 101, (6), pp. 13971409.
    24. 24)
      • 31. Longo, D.L., Fauci, A.S., Kasper, D.L., et al: ‘Harrison's principles of internal medicine’ (McGraw-Hill, New York, NY, 2011, 18th edn.).
    25. 25)
      • 17. Consul-Pacareu, S., Arellano, D., Morshed, B.I.: ‘Body-worn fully-passive wireless analog sensors for biopotential measurement through load modulation’. IEEE Biowireless Conf, 2015, pp. 13.
    26. 26)
      • 22. Morshed, B.I., Harmon, B., Zaman, M.S., et al: ‘Inkjet printed fully-passive body-worn wireless sensors for smart and connected community (SCC)’, J. Low Power Electron. Appl., 2017, 7, (4), pp. 121, article 26.
    27. 27)
      • 25. Sanders, F.H.: ‘Derivations of relationsships Among field strength, power in transmitter-receiver circuits and radiation hazard limits’, NTIA Technical Memo T-10-469, U.S. Dept. of Commerce, June 2010.
    28. 28)
      • 10. Sawan, M., Hu, Y., Coulombe, J.: ‘Wireless smart implants dedicated to multichannel monitoring and microstimulation’, IEEE Circuits Syst. Mag., 2005, 5, (1), pp. 2139.
    29. 29)
      • 19. Noroozi, B., Morshed, B.I.: ‘Simulation of coil separation and angle effects on the mutual inductance for 13.56 MHz WRAP sensors’. National Radio Science Meeting, Boulder, CO, January 4–6 2017.
    30. 30)
      • 5. Yang, D., Fathy, A.E., Li, H., et al: ‘Millimeter accuracy UWB positioning system using sequential sub-sampler and time difference estimation algorithm’. Proc. IEEE conf on Radio and Wireless Symp., 2010, pp. 539542.
    31. 31)
      • 27. Vrijkotte, T.G.M., van Doornen, L.J.P., de Geus, E.J.C.: ‘Effects of work stress on ambulatory blood pressure heart rate, and heart rate variability, hypertension’, Hypertension, 2000, 35, pp. 880886.
    32. 32)
      • 20. Noroozi, B., Morshed, B.I.: ‘Coil distance and angle misalignment effects on the mutual inductance for 13.56 MHz WRAP sensors’. National Radio Science Meeting, Boulder, CO, (accepted), January 4–6 2018.
    33. 33)
      • 6. Wang, Y., Liu, Q., Fathy, A.E.: ‘CW and PulseDoppler radar processing based on FPGA for human sensing applications’, IEEE Trans Geosci. Remote Sens., 2013, 51, (5), pp. 30973107.
    34. 34)
      • 21. Morshed, B.I.: ‘Dual coil for remote probing of signals using resistive wireless analog passive sensors (rWAPS)’. National Radio Science Meeting, Commission B, Boulder, CO, January 6–9 2016.
    35. 35)
      • 18. Noroozi, B., Morshed, B.I.: ‘PSC optimization of 13.56-MHz resistive wireless analog passive sensors’, IEEE Trans. Microw. Theory Techn., 2017, 65, (9), pp. 35483555.
    36. 36)
      • 37. Khatun, S., Mahajan, R., Morshed, B.I.: ‘Comparative study of wavelet based unsupervised ocular artifact removal techniques for single channel EEG data’, J. Translational Eng. Health Med., 2016, 4, (1), pp. 18.
    37. 37)
      • 4. Zhang, C., Kuhn, M.J., Merkl, B.C., et al: ‘Real-time noncoherent UWB positioning radar with millimeter range accuracy: theory and experiment’, IEEE Trans Microw. Theory Tech., 2010, 58, (1), pp. 920.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2017.0064
Loading

Related content

content/journals/10.1049/iet-wss.2017.0064
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading