http://iet.metastore.ingenta.com
1887

Entropy-based method to quantify limb length discrepancy using inertial sensors

Entropy-based method to quantify limb length discrepancy using inertial sensors

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Limb length is a useful parameter in the assessment of common musculoskeletal disorders such as limb length discrepancy. The measurement variation among rates adversely affects the quantitative aspect of assessments and introduces a greater subjectivity in the course of treatment. Common practise for measuring limb length is based on radiographic imaging techniques which are inconvenient, costly and require clinical knowledge. Direct instruments are difficult to use with patients due to susceptibility to human error in determining the position of the rotational joint. In this study, the determination of limb length is automated using a contemporary algorithm which applies curvature to the measurements from a low-cost and miniaturised inertial sensor, primarily used in the bio-kinematic research. The motion artefacts contribute to the ultimate estimations and, in this approach, a least noise threshold model is employed to address the robustness. The proposed estimation technique was validated with real-data observed from 14 healthy subjects comparing with radiographic and direct measurements. The experimental results indicate greater accuracy compared with manual measurements with low root mean squared error percentages with values ranging from 5.34 to 5.84%. Additionally, the mean limb length difference between our estimator and both radiographic measurements and direct measurement was <1.6 cm.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2017.0049
Loading

Related content

content/journals/10.1049/iet-wss.2017.0049
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address