Sensor relocation for improved target tracking

Sensor relocation for improved target tracking

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Wireless Sensor Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In many practical scenarios, targets tend to have certain mobility trends such as following a traverseable terrain, having a common starting/destination locations, or moving in a region with abundant resources. This work is interested in exploring the possible gain from sensor relocation in improving the localisation accuracy of targets that follow mobility trends similar to those previously observed. This objective is tackled using a three-phase approach. In the first phase, the wireless sensor network tracks the targets based on the initial deployment. The second phase uses the location estimates from phase 1 to form a region of interest (ROI). The last phase carries out the sensor relocation to the ROI. Two fitness functions are explored for optimising sensors’ locations in the ROI, namely geometric dilution of precision and K-coverage. K-coverage offered the best performance especially for sensors with a short-to-medium detection range. The uniform random relocation offered a comparable performance with a relatively low computational complexity. Results also revealed the degradation in coverage rate due to relocating sensors to the ROI, and how optimising sensor locations outside the ROI can help in mending coverage holes.


    1. 1)
      • 1. Abo-Zahhad, M., Ahmed, S.M., Sabor, N., et al: ‘Utilisation of multi-objective immune deployment algorithm for coverage area maximisation with limit mobility in wireless sensors networks’, IET Wirel. Sensor Syst., 2015, 5, (5), pp. 250261.
    2. 2)
      • 2. Tan, R., Xing, G., Liu, B., et al: ‘Exploiting data fusion to improve the coverage of wireless sensor networks’, IEEE/ACM Trans. Netw., 2012, 20, (2), pp. 450462.
    3. 3)
      • 3. Wang, G., Cao, G., Berman, P., et al: ‘Bidding protocols for deploying mobile sensors’, IEEE Trans. Mob. Comput., 2007, 6, (5), pp. 563576.
    4. 4)
      • 4. Kong, L., Zhao, M., Liu, X.Y., et al: ‘Surface coverage in sensor networks’, IEEE Trans. Parallel Distrib. Syst., 2014, 25, (1), pp. 234243.
    5. 5)
      • 5. Li, J.S., Kao, H.C.: ‘Distributed K-coverage self-location estimation scheme based on Voronoi diagram’, IET Commun., 2010, 4, (2), pp. 167177.
    6. 6)
      • 6. Njoya, A.N., Thron, C., Barry, J., et al: ‘Efficient scalable sensor node placement algorithm for fixed target coverage applications of wireless sensor networks’, IET Wirel. Sensor Syst., 2017, 7, (2), pp. 4454.
    7. 7)
      • 7. Garetto, M., Gribaudo, M., Chiasserini, C.F., et al: ‘Sensor deployment and relocation: a unified scheme’, J. Comput. Sci. Technol., 2008, 23, (3), pp. 400412.
    8. 8)
      • 8. Liao, Z., Wang, J., Zhang, S., et al: ‘Minimizing movement for target coverage and network connectivity in mobile sensor networks’, IEEE Trans. Parallel Distrib. Syst., 2015, 26, (7), pp. 19711983.
    9. 9)
      • 9. Zou, Y., Chakrabarty, K.: ‘Sensor deployment and target localization based on virtual forces’. IEEE Infocom 2003 22nd Annual Joint Conf. IEEE Computer and Communications Societies (IEEE Cat. No. 03CH37428), San Francisco, CA, 2003, vol. 2, pp. 12931303.
    10. 10)
      • 10. Guo, Z., Zhou, M., Jiang, G.: ‘Adaptive sensor placement and boundary estimation for monitoring mass objects’, IEEE Trans. Syst. Man Cybern. B (Cybern.), 2008, 38, (1), pp. 222232.
    11. 11)
      • 11. Heo, N., Varshney, P.K.: ‘Energy-efficient deployment of intelligent mobile sensor networks’, IEEE Trans. Syst. Man Cybern. A, Syst. Hum., 2005, 35, (1), pp. 7892.
    12. 12)
      • 12. Garey, M., Johnson, D.S.: ‘Computers and intractability: a guide to the theory of NP-completeness’ (Freeman, San Francisco, CA, USA, 1979).
    13. 13)
      • 13. Olfati-Saber, R.: ‘Distributed tracking for mobile sensor networks with information-driven mobility’. 2007 American Control Conf., New York, NY, 2007, pp. 46064612.
    14. 14)
      • 14. Nguyen, H.T., Ji, Q., Smeulders, A.W.M.: ‘Spatio-temporal context for robust multitarget tracking’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29, (1), pp. 5264.
    15. 15)
      • 15. Maggio, E., Cavallaro, A.: ‘Learning scene context for multiple object tracking’, IEEE Trans. Image Process., 2009, 18, (8), pp. 18731884.
    16. 16)
      • 16. Kaplan, L.M.: ‘Global node selection for localization in a distributed sensor network’, IEEE Trans. Aerosp. Electron. Syst., 2006, 42, (1), pp. 113135.
    17. 17)
      • 17. Zoghi, M., Kahaei, M.H.: ‘Adaptive sensor selection in wireless sensor networks for target tracking’, IET Signal Process., 2010, 4, (5), pp. 530536.
    18. 18)
      • 18. Mutambara, A.G.O.: ‘Decentralized estimation and control for multisensor systems’ (CRC, Boca Raton, FL, 1998).
    19. 19)
      • 19. Yarlagadda, R., Ali, I., Al-Dhahir, N., et al: ‘GPS GDOP metric’, IEE Proc., Radar Sonar Navig., 2000, 147, (5), pp. 259264.
    20. 20)
      • 20. Rani, S., Ahmed, S.H.: ‘Multi-hop routing in wireless sensor networks, an overview, taxonomy, and research challenges’ (Springer Briefs in Electrical and Computer Engineering, Springer Singapore, 2016).
    21. 21)
      • 21. Kadar, I.: ‘Optimum geometry selection for sensor fusion’, Proc. SPIE, 1998, 3374, pp. 96107.
    22. 22)
      • 22. Levanon, N.: ‘Lowest GDOP in 2-D scenarios’, lEE Proc., Radar Sonar Navig, 2000, 147, (3), pp. 149155.
    23. 23)
      • 23. Foderaro, G., Ferrari, S., Zavlanos, M.: ‘A decentralized kernel density estimation approach to distributed robot path planning’, 2012.
    24. 24)
      • 24. Sheather, S.J.: ‘Density estimation’, Stat. Sci., 2004, 19, (4), pp. 588597. Available at accessed January 2017.
    25. 25)
      • 25. Bourke, P.: ‘Calculating the area and centroid of a polygon’, July 1988.
    26. 26)
      • 26. Raykar, V.C., Duraiswami, R., Zhao, L.H.: ‘Fast computation of kernel estimators’, J. Comput. Graph. Stat., 2010, 19, (1), pp. 205220.

Related content

This is a required field
Please enter a valid email address