access icon free Sensor relocation for improved target tracking

In many practical scenarios, targets tend to have certain mobility trends such as following a traverseable terrain, having a common starting/destination locations, or moving in a region with abundant resources. This work is interested in exploring the possible gain from sensor relocation in improving the localisation accuracy of targets that follow mobility trends similar to those previously observed. This objective is tackled using a three-phase approach. In the first phase, the wireless sensor network tracks the targets based on the initial deployment. The second phase uses the location estimates from phase 1 to form a region of interest (ROI). The last phase carries out the sensor relocation to the ROI. Two fitness functions are explored for optimising sensors’ locations in the ROI, namely geometric dilution of precision and K-coverage. K-coverage offered the best performance especially for sensors with a short-to-medium detection range. The uniform random relocation offered a comparable performance with a relatively low computational complexity. Results also revealed the degradation in coverage rate due to relocating sensors to the ROI, and how optimising sensor locations outside the ROI can help in mending coverage holes.

Inspec keywords: wireless sensor networks; target tracking; computational complexity

Other keywords: region of interest; ROI; sensor relocation; computational complexity; sensor network; target tracking; geometric dilution

Subjects: Wireless sensor networks

References

    1. 1)
      • 24. Sheather, S.J.: ‘Density estimation’, Stat. Sci., 2004, 19, (4), pp. 588597. Available at http://projecteuclid.org/euclid.ss/1113832723 accessed January 2017.
    2. 2)
      • 13. Olfati-Saber, R.: ‘Distributed tracking for mobile sensor networks with information-driven mobility’. 2007 American Control Conf., New York, NY, 2007, pp. 46064612.
    3. 3)
      • 11. Heo, N., Varshney, P.K.: ‘Energy-efficient deployment of intelligent mobile sensor networks’, IEEE Trans. Syst. Man Cybern. A, Syst. Hum., 2005, 35, (1), pp. 7892.
    4. 4)
      • 26. Raykar, V.C., Duraiswami, R., Zhao, L.H.: ‘Fast computation of kernel estimators’, J. Comput. Graph. Stat., 2010, 19, (1), pp. 205220.
    5. 5)
      • 25. Bourke, P.: ‘Calculating the area and centroid of a polygon’, July 1988.
    6. 6)
      • 16. Kaplan, L.M.: ‘Global node selection for localization in a distributed sensor network’, IEEE Trans. Aerosp. Electron. Syst., 2006, 42, (1), pp. 113135.
    7. 7)
      • 15. Maggio, E., Cavallaro, A.: ‘Learning scene context for multiple object tracking’, IEEE Trans. Image Process., 2009, 18, (8), pp. 18731884.
    8. 8)
      • 18. Mutambara, A.G.O.: ‘Decentralized estimation and control for multisensor systems’ (CRC, Boca Raton, FL, 1998).
    9. 9)
      • 10. Guo, Z., Zhou, M., Jiang, G.: ‘Adaptive sensor placement and boundary estimation for monitoring mass objects’, IEEE Trans. Syst. Man Cybern. B (Cybern.), 2008, 38, (1), pp. 222232.
    10. 10)
      • 8. Liao, Z., Wang, J., Zhang, S., et al: ‘Minimizing movement for target coverage and network connectivity in mobile sensor networks’, IEEE Trans. Parallel Distrib. Syst., 2015, 26, (7), pp. 19711983.
    11. 11)
      • 9. Zou, Y., Chakrabarty, K.: ‘Sensor deployment and target localization based on virtual forces’. IEEE Infocom 2003 22nd Annual Joint Conf. IEEE Computer and Communications Societies (IEEE Cat. No. 03CH37428), San Francisco, CA, 2003, vol. 2, pp. 12931303.
    12. 12)
      • 4. Kong, L., Zhao, M., Liu, X.Y., et al: ‘Surface coverage in sensor networks’, IEEE Trans. Parallel Distrib. Syst., 2014, 25, (1), pp. 234243.
    13. 13)
      • 7. Garetto, M., Gribaudo, M., Chiasserini, C.F., et al: ‘Sensor deployment and relocation: a unified scheme’, J. Comput. Sci. Technol., 2008, 23, (3), pp. 400412.
    14. 14)
      • 5. Li, J.S., Kao, H.C.: ‘Distributed K-coverage self-location estimation scheme based on Voronoi diagram’, IET Commun., 2010, 4, (2), pp. 167177.
    15. 15)
      • 22. Levanon, N.: ‘Lowest GDOP in 2-D scenarios’, lEE Proc., Radar Sonar Navig, 2000, 147, (3), pp. 149155.
    16. 16)
      • 3. Wang, G., Cao, G., Berman, P., et al: ‘Bidding protocols for deploying mobile sensors’, IEEE Trans. Mob. Comput., 2007, 6, (5), pp. 563576.
    17. 17)
      • 6. Njoya, A.N., Thron, C., Barry, J., et al: ‘Efficient scalable sensor node placement algorithm for fixed target coverage applications of wireless sensor networks’, IET Wirel. Sensor Syst., 2017, 7, (2), pp. 4454.
    18. 18)
      • 20. Rani, S., Ahmed, S.H.: ‘Multi-hop routing in wireless sensor networks, an overview, taxonomy, and research challenges’ (Springer Briefs in Electrical and Computer Engineering, Springer Singapore, 2016).
    19. 19)
      • 12. Garey, M., Johnson, D.S.: ‘Computers and intractability: a guide to the theory of NP-completeness’ (Freeman, San Francisco, CA, USA, 1979).
    20. 20)
      • 17. Zoghi, M., Kahaei, M.H.: ‘Adaptive sensor selection in wireless sensor networks for target tracking’, IET Signal Process., 2010, 4, (5), pp. 530536.
    21. 21)
      • 19. Yarlagadda, R., Ali, I., Al-Dhahir, N., et al: ‘GPS GDOP metric’, IEE Proc., Radar Sonar Navig., 2000, 147, (5), pp. 259264.
    22. 22)
      • 23. Foderaro, G., Ferrari, S., Zavlanos, M.: ‘A decentralized kernel density estimation approach to distributed robot path planning’, 2012.
    23. 23)
      • 21. Kadar, I.: ‘Optimum geometry selection for sensor fusion’, Proc. SPIE, 1998, 3374, pp. 96107.
    24. 24)
      • 1. Abo-Zahhad, M., Ahmed, S.M., Sabor, N., et al: ‘Utilisation of multi-objective immune deployment algorithm for coverage area maximisation with limit mobility in wireless sensors networks’, IET Wirel. Sensor Syst., 2015, 5, (5), pp. 250261.
    25. 25)
      • 14. Nguyen, H.T., Ji, Q., Smeulders, A.W.M.: ‘Spatio-temporal context for robust multitarget tracking’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29, (1), pp. 5264.
    26. 26)
      • 2. Tan, R., Xing, G., Liu, B., et al: ‘Exploiting data fusion to improve the coverage of wireless sensor networks’, IEEE/ACM Trans. Netw., 2012, 20, (2), pp. 450462.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2017.0037
Loading

Related content

content/journals/10.1049/iet-wss.2017.0037
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading