http://iet.metastore.ingenta.com
1887

Industrial Internet of things at work: a case study analysis in robotic-aided environmental monitoring

Industrial Internet of things at work: a case study analysis in robotic-aided environmental monitoring

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Wireless Sensor Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Nowadays, Internet of things (IoT) and robotic systems are key drivers of technological innovation trends. Leveraging the advantages of both technologies, IoT-aided robotic systems can disclose a disruptive potential of opportunities The present contribution provides an experimental analysis of an IoT-aided robotic system for environmental monitoring. To this end, an experimental testbed has been developed. It is composed of: (i) an IoT device connected to (ii) an unmanned aerial vehicle (UAV) which executes a patrolling mission within a specified area, where (iii) an IoT network has been deployed to sense environmental data. An extensive experimental campaign has been carried out to scavenge pros and cons of adopted technologies. The key results of the authors analysis show that: (i) the UAV does not incur any significant overhead due to onboard IoT equipment and (ii) the overall quality of service expressed in terms of network joining time, data retrieval delay and packet loss ratio satisfies the mission requirements. These results enable further development in larger-scale environment.

References

    1. 1)
      • L. Atzori , A. Iera , G. Morabito .
        1. Atzori, L., Iera, A., Morabito, G.: ‘The Internet of things: a survey’, Comput. Netw., 2010, 54, pp. 27872805.
        . Comput. Netw. , 2787 - 2805
    2. 2)
      • S. Shue , J.M. Conrad .
        2. Shue, S., Conrad, J.M.: ‘A survey of robotic applications in wireless sensor networks’. 2013 Proc. of IEEE Southeastcon, April 2013.
        . 2013 Proc. of IEEE Southeastcon
    3. 3)
      • M. Palattella , N. Accettura , X. Vilajosana .
        3. Palattella, M., Accettura, N., Vilajosana, X., et al: ‘Standardized protocol stack for the Internet of (important) things’, IEEE Commun. Surv. Tutor., 2013, 15, (3), pp. 13891406.
        . IEEE Commun. Surv. Tutor. , 3 , 1389 - 1406
    4. 4)
      • R. Nukala , K. Panduru , A. Shields .
        4. Nukala, R., Panduru, K., Shields, A., et al: ‘Internet of things: a review from ‘farm to fork’. 2016 27th Irish Signals and Systems Conf. (ISSC), June 2016, pp. 16.
        . 2016 27th Irish Signals and Systems Conf. (ISSC) , 1 - 6
    5. 5)
      • T. Watteyne , M.R. Palattella , L.A. Grieco .
        5. Watteyne, T., Palattella, M.R., Grieco, L.A.: ‘Using IEEE 802.15.4e time-slotted channel hopping (TSCH) in the Internet of things (IoT): problem statement’, Internet Engineering Task Force (IETF) – Request for Comments: 7554, 2015.
        .
    6. 6)
      • M.R. Palattella , N. Accettura , L.A. Grieco .
        6. Palattella, M.R., Accettura, N., Grieco, L.A., et al: ‘On optimal scheduling in duty-cycled industrial IoT applications using IEEE802.15.4e TSCH’, IEEE Sens. J., 2013, 13, (10), pp. 36553666.
        . IEEE Sens. J. , 10 , 3655 - 3666
    7. 7)
      • F.Y. Wu , H.H. Asada .
        7. Wu, F.Y., Asada, H.H.: ‘Implicit and intuitive grasp posture control for wearable robotic fingers: a data-driven method using partial least squares’, IEEE Trans. Robot., 2016, 32, (1), pp. 176186.
        . IEEE Trans. Robot. , 1 , 176 - 186
    8. 8)
      • M.J. Fard , S. Ameri , R.B. Chinnam .
        8. Fard, M.J., Ameri, S., Chinnam, R.B., et al: ‘Soft boundary approach for unsupervised gesture segmentation in robotic-assisted surgery’, IEEE Robot. Autom. Lett., 2017, 2, (1), pp. 171178.
        . IEEE Robot. Autom. Lett. , 1 , 171 - 178
    9. 9)
      • A. Macwan , J. Vilela , G. Nejat .
        9. Macwan, A., Vilela, J., Nejat, G., et al: ‘A multirobot path-planning strategy for autonomous wilderness search and rescue’, IEEE Trans. Cybern., 2015, 45, (9), pp. 17841797.
        . IEEE Trans. Cybern. , 9 , 1784 - 1797
    10. 10)
      • A. Petitti , A. Franchi , D. Di Paola .
        10. Petitti, A., Franchi, A., Di Paola, D., et al: ‘Decentralized motion control for cooperative manipulation with a team of networked mobile manipulators’. 2014 IEEE Int. Conf. on Robotics and Automation (ICRA), May 2016, pp. 441446.
        . 2014 IEEE Int. Conf. on Robotics and Automation (ICRA) , 441 - 446
    11. 11)
      • M.O. Shneier , R.V. Bostelman .
        11. Shneier, M.O., Bostelman, R.V.: ‘Literature review of mobile robots for manufacturing’. Technical Report, NISTIR – 8022, NIST Pubs, 2015.
        .
    12. 12)
      • G. Reina , A. Milella , R. Rouveure .
        12. Reina, G., Milella, A., Rouveure, R., et al: ‘Ambient awareness for agricultural robotic vehicles’, Biosyst. Eng., 2016, 146, pp. 114132, special Issue: Advances in Robotic Agriculture for Crops. Available at http://www.sciencedirect.com/science/article/pii/S1537511015001889, DOI: 10.1016/j.biosystemseng.2015.12.010, accessed 4 May 2017.
        . Biosyst. Eng. , 114 - 132
    13. 13)
      • M. Dunbabin , L. Marques .
        13. Dunbabin, M., Marques, L.: ‘Robots for environmental monitoring: significant advancements and applications’, IEEE Robot. Autom. Mag., 2012, 19, (1), pp. 2439.
        . IEEE Robot. Autom. Mag. , 1 , 24 - 39
    14. 14)
      • N.A. Greenblatt .
        14. Greenblatt, N.A.: ‘Self-driving cars and the law’, IEEE Spectr., 2016, 53, (2), pp. 4651.
        . IEEE Spectr. , 2 , 46 - 51
    15. 15)
      • R. D'Andrea . (2014)
        15. D'Andrea, R.: ‘Mobile-robot-enabled smart warehouses’, in Samad, T., Annaswamy, A., (EDs.): ‘The impact of control technology, (2014).
        .
    16. 16)
      • A.M. Kohl , K.Y. Pettersen , E. Kelasidi .
        16. Kohl, A.M., Pettersen, K.Y., Kelasidi, E., et al: ‘Planar path following of underwater snake robots in the presence of ocean currents’, IEEE Robot. Autom. Lett., 2016, 1, (1), pp. 383390.
        . IEEE Robot. Autom. Lett. , 1 , 383 - 390
    17. 17)
      • D.C. Fernández , G.A. Hollinger .
        17. Fernández, D.C., Hollinger, G.A.: ‘Model predictive control for underwater robots in ocean waves’, IEEE Robot. Autom. Lett., 2017, 2, (1), pp. 8895.
        . IEEE Robot. Autom. Lett. , 1 , 88 - 95
    18. 18)
      • J. Luo , J. Yao , Y. Peng .
        18. Luo, J., Yao, J., Peng, Y., et al: ‘Modeling of an anti-interference spherical robot for polar region scientific research’. 2014 IEEE Int. Conf. on Information and Automation (ICIA), July 2014, pp. 13001305.
        . 2014 IEEE Int. Conf. on Information and Automation (ICIA) , 1300 - 1305
    19. 19)
      • J.A. Shah , J.H. Saleh , J.A. Hoffman .
        19. Shah, J.A., Saleh, J.H., Hoffman, J.A.: ‘Review and synthesis of considerations in architecting heterogeneous teams of humans and robots for optimal space exploration’, IEEE Trans. Syst. Man Cybern. C (Appl. Rev.), 2007, 37, (5), pp. 779793.
        . IEEE Trans. Syst. Man Cybern. C (Appl. Rev.) , 5 , 779 - 793
    20. 20)
      • M.E. Rentschler , S.R. Platt , K. Berg .
        20. Rentschler, M.E., Platt, S.R., Berg, K., et al: ‘Miniature in vivo robots for remote and harsh environments’, IEEE Trans. Inf. Technol. Biomed., 2008, 12, (1), pp. 6675.
        . IEEE Trans. Inf. Technol. Biomed. , 1 , 66 - 75
    21. 21)
      • F. Bullo , J. Cortés , S. Martínez . (2009)
        21. Bullo, F., Cortés, J., Martínez, S.: ‘Distributed control of robotic networks, ser. applied mathematics series’ (Princeton University Press, 2009). Available at http://coordinationbook.info.
        .
    22. 22)
      • L.A. Grieco , A. Rizzo , S. Colucci .
        22. Grieco, L.A., Rizzo, A., Colucci, S., et al: ‘Iot-aided robotics applications: technological implications, target domains and open issues’, Comput. Commun., 2014, 54, pp. 3247.
        . Comput. Commun. , 32 - 47
    23. 23)
      • K.N. Tahar , A. Ahmad , W.A.A.W.M. Akib .
        23. Tahar, K.N., Ahmad, A., Akib, W.A.A.W.M., et al: ‘Aerial mapping using autonomous fixed-wing unmanned aerial vehicle’. 2012 IEEE Eighth Int. Colloquium on Signal Processing and its Applications, March 2012, pp. 164168.
        . 2012 IEEE Eighth Int. Colloquium on Signal Processing and its Applications , 164 - 168
    24. 24)
      • T. Watteyne , J. Weiss , L. Doherty .
        24. Watteyne, T., Weiss, J., Doherty, L., et al: ‘Industrial IEEE802.15.4e networks: performance and trade-offs’. IEEE Int. Conf. on Communications (IEEE ICC), vol. Internet of Things Symp., London, UK, June 2015, pp. 812.
        . IEEE Int. Conf. on Communications (IEEE ICC), vol. Internet of Things Symp. , 8 - 12
    25. 25)
      • 25. ‘IPv6 over low power WPAN (6Lo)’, IETF 6Lo working group, 2016. Available at http://datatracker.ietf.org/wg/6lo/, accessed 4 May 2017.
        .
    26. 26)
      • 26. ‘Routing over low power and lossy networks (roll)’, IETF ROLL working group, 2016. Available at http://datatracker.ietf.org/wg/roll/, accessed 4 May 2017.
        .
    27. 27)
      • 27. ‘Constrained RESTful environments (CoRE)’, IETF CoRE working group, 2016. Available at http://datatracker.ietf.org/wg/core/, accessed 4 May 2017.
        .
    28. 28)
      • H. Jayakumar , A. Raha , Y. Kim .
        28. Jayakumar, H., Raha, A., Kim, Y., et al: ‘Energy-efficient system design for IoT devices’. Proc. IEEE Asia and South Pacific Design Automation Conf. (ASP-DAC), January 2016, pp. 298301.
        . Proc. IEEE Asia and South Pacific Design Automation Conf. (ASP-DAC) , 298 - 301
    29. 29)
      • M.R. Palattella , T. Watteyne , Q. Wang .
        29. Palattella, M.R., Watteyne, T., Wang, Q., et al: ‘On-the-fly bandwidth reservation for 6TISCH wireless industrial networks’, IEEE Sens. J., 2016, 16, (2), pp. 550560.
        . IEEE Sens. J. , 2 , 550 - 560
    30. 30)
      • Z. Shelby , K. Hartke , C. Bormann .
        30. Shelby, Z., Hartke, K., Bormann, C., et al: ‘Constrained application protocol (CoAP)’. IETF CoRE Working Group, February 2011.
        . IETF CoRE Working Group
    31. 31)
      • J. Postel .
        31. Postel, J.: ‘User datagram protocol’, Internet engineering task force – request for comments: 768, 1980.
        .
    32. 32)
      • 32. IEEE Standard for Local and Metropolitan Area Networks – Part 15.4: ‘Low-rate wireless personal area networks (LR-WPANs)’, Amendment 1: MAC Sublayer’, 16 April 2012.
        .
    33. 33)
      • B. Kehoe , S. Patil , P. Abbeel .
        33. Kehoe, B., Patil, S., Abbeel, P., et al: ‘A survey of research on cloud robotics and automation’, IEEE Trans. Autom. Sci. Eng., 2015, 12, (2), pp. 398409.
        . IEEE Trans. Autom. Sci. Eng. , 2 , 398 - 409
    34. 34)
      • P.P. Ray .
        34. Ray, P.P.: ‘Internet of robotic things: concept, technologies, and challenges’, IEEE Access, 2016, 4, pp. 94899500.
        . IEEE Access , 9489 - 9500
    35. 35)
      • C. Razafimandimby , V. Loscri , A.M. Vegni .
        35. Razafimandimby, C., Loscri, V., Vegni, A.M.: ‘A neural network and IoT based scheme for performance assessment in Internet of robotic things’. 2016 IEEE First Int. Conf. on Internet-of-Things Design and Implementation (IoTDI), April 2016, pp. 241246.
        . 2016 IEEE First Int. Conf. on Internet-of-Things Design and Implementation (IoTDI) , 241 - 246
    36. 36)
      • F. Santoso .
        36. Santoso, F.: ‘Range-only distributed navigation protocol for uniform coverage in wireless sensor networks’, IET Wirel. Sens. Syst., 2015, 5, (1), pp. 2030.
        . IET Wirel. Sens. Syst. , 1 , 20 - 30
    37. 37)
      • J.M. Chung , Y. Nam , K. Park .
        37. Chung, J.M., Nam, Y., Park, K., et al: ‘Exploration time reduction and sustainability enhancement of cooperative clustered multiple robot sensor networks’, IEEE Netw., 2012, 26, (3), pp. 4148.
        . IEEE Netw. , 3 , 41 - 48
    38. 38)
      • X. Li , I. Lille , R. Falcon .
        38. Li, X., Lille, I., Falcon, R., et al: ‘Servicing wireless sensor networks by mobile robots’, IEEE Commun. Mag., 2012, 50, (7), pp. 147154.
        . IEEE Commun. Mag. , 7 , 147 - 154
    39. 39)
      • P. Mathur , R.H. Nielsen , N.R. Prasad .
        39. Mathur, P., Nielsen, R.H., Prasad, N.R., et al: ‘Data collection using miniature aerial vehicles in wireless sensor networks’, IET Wirel. Sens. Syst., 2016, 6, (1), pp. 1725.
        . IET Wirel. Sens. Syst. , 1 , 17 - 25
    40. 40)
      • T. Watteyne , X. Vilajosana , B. Kerkez .
        40. Watteyne, T., Vilajosana, X., Kerkez, B., et al: ‘OpenWSN: a standards-based low-power wireless development environment’, Wiley Trans. Emerging Telecommun. Technol., 2012, 23, (5), pp. 480493.
        . Wiley Trans. Emerging Telecommun. Technol. , 5 , 480 - 493
    41. 41)
      • E. Vogli , G. Ribezzo , L.A. Grieco .
        41. Vogli, E., Ribezzo, G., Grieco, L.A., et al: ‘Fast join and synchronization schema in the IEEE 802.15.4e MAC’. Proc. IEEE Wireless Communications and Networking Conf., WCNC, Workshop on Energy Efficiency in the Internet of Things, and Internet of Things for Energy Efficiency, E2IoT, New Orleans, LA, USA, March 2015.
        . Proc. IEEE Wireless Communications and Networking Conf., WCNC, Workshop on Energy Efficiency in the Internet of Things, and Internet of Things for Energy Efficiency, E2IoT
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2017.0032
Loading

Related content

content/journals/10.1049/iet-wss.2017.0032
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address