access icon free Industrial Internet of things at work: a case study analysis in robotic-aided environmental monitoring

Nowadays, Internet of things (IoT) and robotic systems are key drivers of technological innovation trends. Leveraging the advantages of both technologies, IoT-aided robotic systems can disclose a disruptive potential of opportunities The present contribution provides an experimental analysis of an IoT-aided robotic system for environmental monitoring. To this end, an experimental testbed has been developed. It is composed of: (i) an IoT device connected to (ii) an unmanned aerial vehicle (UAV) which executes a patrolling mission within a specified area, where (iii) an IoT network has been deployed to sense environmental data. An extensive experimental campaign has been carried out to scavenge pros and cons of adopted technologies. The key results of the authors analysis show that: (i) the UAV does not incur any significant overhead due to onboard IoT equipment and (ii) the overall quality of service expressed in terms of network joining time, data retrieval delay and packet loss ratio satisfies the mission requirements. These results enable further development in larger-scale environment.

Inspec keywords: autonomous aerial vehicles; environmental science computing; mobile robots; quality of service; Internet of Things; environmental monitoring (geophysics)

Other keywords: data retrieval delay; IoT-aided robotic systems; quality of service; unmanned aerial vehicle; network joining time; patrolling mission; UAV; industrial Internet of Things; packet loss ratio; robotic-aided environmental monitoring

Subjects: Computer networks and techniques; Environmental science computing; Mobile robots; Computer communications; Geophysics computing; Telerobotics

References

    1. 1)
      • 5. Watteyne, T., Palattella, M.R., Grieco, L.A.: ‘Using IEEE 802.15.4e time-slotted channel hopping (TSCH) in the Internet of things (IoT): problem statement’, Internet Engineering Task Force (IETF) – Request for Comments: 7554, 2015.
    2. 2)
      • 7. Wu, F.Y., Asada, H.H.: ‘Implicit and intuitive grasp posture control for wearable robotic fingers: a data-driven method using partial least squares’, IEEE Trans. Robot., 2016, 32, (1), pp. 176186.
    3. 3)
      • 29. Palattella, M.R., Watteyne, T., Wang, Q., et al: ‘On-the-fly bandwidth reservation for 6TISCH wireless industrial networks’, IEEE Sens. J., 2016, 16, (2), pp. 550560.
    4. 4)
      • 20. Rentschler, M.E., Platt, S.R., Berg, K., et al: ‘Miniature in vivo robots for remote and harsh environments’, IEEE Trans. Inf. Technol. Biomed., 2008, 12, (1), pp. 6675.
    5. 5)
      • 28. Jayakumar, H., Raha, A., Kim, Y., et al: ‘Energy-efficient system design for IoT devices’. Proc. IEEE Asia and South Pacific Design Automation Conf. (ASP-DAC), January 2016, pp. 298301.
    6. 6)
      • 12. Reina, G., Milella, A., Rouveure, R., et al: ‘Ambient awareness for agricultural robotic vehicles’, Biosyst. Eng., 2016, 146, pp. 114132, special Issue: Advances in Robotic Agriculture for Crops. Available at http://www.sciencedirect.com/science/article/pii/S1537511015001889, DOI: 10.1016/j.biosystemseng.2015.12.010, accessed 4 May 2017.
    7. 7)
      • 18. Luo, J., Yao, J., Peng, Y., et al: ‘Modeling of an anti-interference spherical robot for polar region scientific research’. 2014 IEEE Int. Conf. on Information and Automation (ICIA), July 2014, pp. 13001305.
    8. 8)
      • 33. Kehoe, B., Patil, S., Abbeel, P., et al: ‘A survey of research on cloud robotics and automation’, IEEE Trans. Autom. Sci. Eng., 2015, 12, (2), pp. 398409.
    9. 9)
      • 8. Fard, M.J., Ameri, S., Chinnam, R.B., et al: ‘Soft boundary approach for unsupervised gesture segmentation in robotic-assisted surgery’, IEEE Robot. Autom. Lett., 2017, 2, (1), pp. 171178.
    10. 10)
      • 23. Tahar, K.N., Ahmad, A., Akib, W.A.A.W.M., et al: ‘Aerial mapping using autonomous fixed-wing unmanned aerial vehicle’. 2012 IEEE Eighth Int. Colloquium on Signal Processing and its Applications, March 2012, pp. 164168.
    11. 11)
      • 21. Bullo, F., Cortés, J., Martínez, S.: ‘Distributed control of robotic networks, ser. applied mathematics series’ (Princeton University Press, 2009). Available at http://coordinationbook.info.
    12. 12)
      • 35. Razafimandimby, C., Loscri, V., Vegni, A.M.: ‘A neural network and IoT based scheme for performance assessment in Internet of robotic things’. 2016 IEEE First Int. Conf. on Internet-of-Things Design and Implementation (IoTDI), April 2016, pp. 241246.
    13. 13)
      • 24. Watteyne, T., Weiss, J., Doherty, L., et al: ‘Industrial IEEE802.15.4e networks: performance and trade-offs’. IEEE Int. Conf. on Communications (IEEE ICC), vol. Internet of Things Symp., London, UK, June 2015, pp. 812.
    14. 14)
      • 4. Nukala, R., Panduru, K., Shields, A., et al: ‘Internet of things: a review from ‘farm to fork’. 2016 27th Irish Signals and Systems Conf. (ISSC), June 2016, pp. 16.
    15. 15)
      • 34. Ray, P.P.: ‘Internet of robotic things: concept, technologies, and challenges’, IEEE Access, 2016, 4, pp. 94899500.
    16. 16)
      • 16. Kohl, A.M., Pettersen, K.Y., Kelasidi, E., et al: ‘Planar path following of underwater snake robots in the presence of ocean currents’, IEEE Robot. Autom. Lett., 2016, 1, (1), pp. 383390.
    17. 17)
      • 6. Palattella, M.R., Accettura, N., Grieco, L.A., et al: ‘On optimal scheduling in duty-cycled industrial IoT applications using IEEE802.15.4e TSCH’, IEEE Sens. J., 2013, 13, (10), pp. 36553666.
    18. 18)
      • 30. Shelby, Z., Hartke, K., Bormann, C., et al: ‘Constrained application protocol (CoAP)’. IETF CoRE Working Group, February 2011.
    19. 19)
      • 11. Shneier, M.O., Bostelman, R.V.: ‘Literature review of mobile robots for manufacturing’. Technical Report, NISTIR – 8022, NIST Pubs, 2015.
    20. 20)
      • 2. Shue, S., Conrad, J.M.: ‘A survey of robotic applications in wireless sensor networks’. 2013 Proc. of IEEE Southeastcon, April 2013.
    21. 21)
      • 3. Palattella, M., Accettura, N., Vilajosana, X., et al: ‘Standardized protocol stack for the Internet of (important) things’, IEEE Commun. Surv. Tutor., 2013, 15, (3), pp. 13891406.
    22. 22)
      • 22. Grieco, L.A., Rizzo, A., Colucci, S., et al: ‘Iot-aided robotics applications: technological implications, target domains and open issues’, Comput. Commun., 2014, 54, pp. 3247.
    23. 23)
      • 37. Chung, J.M., Nam, Y., Park, K., et al: ‘Exploration time reduction and sustainability enhancement of cooperative clustered multiple robot sensor networks’, IEEE Netw., 2012, 26, (3), pp. 4148.
    24. 24)
      • 41. Vogli, E., Ribezzo, G., Grieco, L.A., et al: ‘Fast join and synchronization schema in the IEEE 802.15.4e MAC’. Proc. IEEE Wireless Communications and Networking Conf., WCNC, Workshop on Energy Efficiency in the Internet of Things, and Internet of Things for Energy Efficiency, E2IoT, New Orleans, LA, USA, March 2015.
    25. 25)
      • 27. ‘Constrained RESTful environments (CoRE)’, IETF CoRE working group, 2016. Available at http://datatracker.ietf.org/wg/core/, accessed 4 May 2017.
    26. 26)
      • 15. D'Andrea, R.: ‘Mobile-robot-enabled smart warehouses’, in Samad, T., Annaswamy, A., (EDs.): ‘The impact of control technology, (2014).
    27. 27)
      • 13. Dunbabin, M., Marques, L.: ‘Robots for environmental monitoring: significant advancements and applications’, IEEE Robot. Autom. Mag., 2012, 19, (1), pp. 2439.
    28. 28)
      • 38. Li, X., Lille, I., Falcon, R., et al: ‘Servicing wireless sensor networks by mobile robots’, IEEE Commun. Mag., 2012, 50, (7), pp. 147154.
    29. 29)
      • 10. Petitti, A., Franchi, A., Di Paola, D., et al: ‘Decentralized motion control for cooperative manipulation with a team of networked mobile manipulators’. 2014 IEEE Int. Conf. on Robotics and Automation (ICRA), May 2016, pp. 441446.
    30. 30)
      • 36. Santoso, F.: ‘Range-only distributed navigation protocol for uniform coverage in wireless sensor networks’, IET Wirel. Sens. Syst., 2015, 5, (1), pp. 2030.
    31. 31)
      • 9. Macwan, A., Vilela, J., Nejat, G., et al: ‘A multirobot path-planning strategy for autonomous wilderness search and rescue’, IEEE Trans. Cybern., 2015, 45, (9), pp. 17841797.
    32. 32)
      • 32. IEEE Standard for Local and Metropolitan Area Networks – Part 15.4: ‘Low-rate wireless personal area networks (LR-WPANs)’, Amendment 1: MAC Sublayer’, 16 April 2012.
    33. 33)
      • 26. ‘Routing over low power and lossy networks (roll)’, IETF ROLL working group, 2016. Available at http://datatracker.ietf.org/wg/roll/, accessed 4 May 2017.
    34. 34)
      • 17. Fernández, D.C., Hollinger, G.A.: ‘Model predictive control for underwater robots in ocean waves’, IEEE Robot. Autom. Lett., 2017, 2, (1), pp. 8895.
    35. 35)
      • 14. Greenblatt, N.A.: ‘Self-driving cars and the law’, IEEE Spectr., 2016, 53, (2), pp. 4651.
    36. 36)
      • 25. ‘IPv6 over low power WPAN (6Lo)’, IETF 6Lo working group, 2016. Available at http://datatracker.ietf.org/wg/6lo/, accessed 4 May 2017.
    37. 37)
      • 19. Shah, J.A., Saleh, J.H., Hoffman, J.A.: ‘Review and synthesis of considerations in architecting heterogeneous teams of humans and robots for optimal space exploration’, IEEE Trans. Syst. Man Cybern. C (Appl. Rev.), 2007, 37, (5), pp. 779793.
    38. 38)
      • 40. Watteyne, T., Vilajosana, X., Kerkez, B., et al: ‘OpenWSN: a standards-based low-power wireless development environment’, Wiley Trans. Emerging Telecommun. Technol., 2012, 23, (5), pp. 480493.
    39. 39)
      • 39. Mathur, P., Nielsen, R.H., Prasad, N.R., et al: ‘Data collection using miniature aerial vehicles in wireless sensor networks’, IET Wirel. Sens. Syst., 2016, 6, (1), pp. 1725.
    40. 40)
      • 31. Postel, J.: ‘User datagram protocol’, Internet engineering task force – request for comments: 768, 1980.
    41. 41)
      • 1. Atzori, L., Iera, A., Morabito, G.: ‘The Internet of things: a survey’, Comput. Netw., 2010, 54, pp. 27872805.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2017.0032
Loading

Related content

content/journals/10.1049/iet-wss.2017.0032
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading