Energy efficient policy selection in wireless sensor network using cross layer approach

Energy efficient policy selection in wireless sensor network using cross layer approach

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Wireless Sensor Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors have addressed the issue of energy saving in packet retransmission by reducing the packet loss in the first attempt. They have formulated the problem as Markov decision process and mapped the system into various states based on system dynamics like channel gain, buffer space, battery energy and harvested energy. In wireless sensor network, adaptive policy management is the best approach to work out with the variation of system states in a dynamically changing environment. The policies are defined regarding various controllable parameters like transmission power, modulation scheme, and transmission rate. The solution is sought regarding best policy selection as per the individual state of the system. They have evaluated the performance of the proposed optimum transreceiver scheme by extensive simulations with existing schemes like optimum energy allocation, adaptive modulation and adaptive power management for the various performance metrics like net bit rate and energy consumption in retransmission of packets for different system states.


    1. 1)
      • 1. Mathur, P., Nielsen, R.H., Prasad, N.R., et al: ‘Data collection using miniature aerial vehicles in wireless sensor networks’, IET Wirel. Sensor Syst., 2016, 6, (1), pp. 1725.
    2. 2)
      • 2. Cao, J., Yang, L.-L., Zhong, Z.: ‘Performance analysis of multihop wireless links over generalized- K fading channels’, IEEE Trans. Veh. Technol., 2012, 61, (4), pp. 15901598.
    3. 3)
      • 3. Zheng, J., Jamalipour, A.: ‘Wireless sensor networks: a networking perspective’ (Wiley Press, Hoboken, USA, 2009).
    4. 4)
      • 4. Alkhdour, T., Baroudi, U., Shakshuki, E., et al: ‘An optimal cross layer scheduling for periodic WSN applications’, Proc. Int. Conf. Ambient Systems, Networks and Technologies, 2013, 19, pp. 8897.
    5. 5)
      • 5. Kumar, D.: ‘Performance analysis of energy efficient clustering protocols for maximising lifetime of wireless sensor networks’, IET Wirel. Sensor Syst., 2014, 4, (1), pp. 916.
    6. 6)
      • 6. Zhang, J., Jiang, H., Jiang, H., et al: ‘Energy efficient policy based on cross-layer cooperation in wireless communication’, Int. J. Distrib. Sensor Netw., 2014, 40, (2014), pp. 111.
    7. 7)
      • 7. Vuran, M.C., Akyildiz, I.F.: ‘XLP a cross layer protocol for efficient communication in wireless sensor network’, IEEE Trans. Mobile Comput., 2010, 9, (11), pp. 15781591.
    8. 8)
      • 8. Zhang, T., Chen, W., Han, Z., et al: ‘A cross layer perspective on energy harvesting aided green communication over fading channel’, IEEE Trans. Veh. Technol., 2015, 64, (4), pp. 15191534.
    9. 9)
      • 9. Das, S.N., Misra, S.: ‘Correlation-aware cross-layer design for network management of wireless sensor networks’, IET Wirel. Sensor Syst., 2015, 5, (6), pp. 263270.
    10. 10)
      • 10. Lee, S., Kwon, B., Lee, S., et al: ‘BUCKET: scheduling of solar-powered sensor networks via cross-layer optimization’, IEEE Sens. J., 2015, 15, (3), pp. 14891503.
    11. 11)
      • 11. Yetgin, H., Cheung, K.T.K., El-Hajjar, M., et al: ‘Cross-layer network lifetime optimisation considering transmit and signal processing power in wireless sensor networks’, IET Wirel. Sensor Syst., 2014, 4, (4), pp. 176182.
    12. 12)
      • 12. Han, C., Jornet, J.M., Fadel, E., et al: ‘A cross-layer communication module for the internet of things’, Comput. Netw., 2013, 57, pp. 622633.
    13. 13)
      • 13. Al-Bzoor, M., Zhu, Y., Liu, J., et al: ‘An adaptive power controlled routing protocol for underwater sensor network’, Int. J. Sensor Netw., 2015, 18, (4), pp. 238249.
    14. 14)
      • 14. Weng, C.-E., Zhang, J.-M., Hung, H.-L.: ‘An efficient power control scheme and joint adaptive modulation for wireless sensor network’, Comput. Electric. Eng. J., 2014, 40, (2), pp. 641650.
    15. 15)
      • 15. Karvonen, H., Pomalanza, C., Hämäläinen, M.: ‘A cross layer optimization approach for lower layers of the protocol stack in sensor networks’, ACM Trans. Sensor Netw., 2014, 11, (1), pp. 130.
    16. 16)
      • 16. Anane, R., Raoof, K., Bouallegue, R.: ‘Minimization of wireless sensor network energy consumption through optimal modulation scheme and channel coding strategy’, J. Signal Process. Syst., 2016, 83, (1), pp. 6581.
    17. 17)
      • 17. Mastronarde, N., van der Schhar, M.: ‘Fast reinforcement learning for energy-efficient wireless communication’, IEEE Trans. Signal Process., 2011, 59, (12), pp. 62626266.
    18. 18)
      • 18. Mao, S., Cheung, M.H.: ‘Joint energy allocation for sensing and transmission in rechargeable wireless sensor networks’, IEEE Trans. Veh. Technol., 2014, 63, (6), pp. 28622875.
    19. 19)
      • 19. Mao, S., Cheung, M.H., Wong, V.W.S.: ‘An optimal energy allocation algorithm for energy harvesting wireless sensor networks’. Proc. IEEE ICC, Otawa, Canada, June 2012, pp. 265270.
    20. 20)
      • 20. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., et al: ‘Wireless sensor networks: a survey’, Comput. Netw., 2012, 38, (4), pp. 393422.
    21. 21)
      • 21. Alsheikh, M.A., Hoang, D.T., Niyato, D., et al: ‘Markov decision processes with applications in wireless sensor networks: a survey’, IEEE Commun. Surv. Tutor., 2015, 17, (3), pp. 12391267.
    22. 22)
      • 22. Ku, M.-L., Chen, Y., Ray Liu, K.J.: ‘Data-driven stochastic models and policies for energy harvesting sensor communications’, J. Sel. Area Commun., 2015, 33, (8), pp. 15051520.
    23. 23)
      • 23. Solar Irridiance Data. Available at, accessed December 2016.
    24. 24)
      • 24. Proakis, J.G., Salehi, M.: ‘Digital communication’ (McGraw-Hill Press, New York City, USA, 2007, 5th edn.).

Related content

This is a required field
Please enter a valid email address